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PREFACE

The Fourteenth International Conference “Computer Data Analysis and Modeling:
Stochastics and Data Science” (CDAM’2025) organized by the Belarusian State
University on September 24–27, 2025, is devoted to the topical problems in computer
data analysis and modeling. Methods of computer data analysis and modeling are
widely used in variety of fields: computer support of scientific research; decision making
in economics, business, engineering, medicine end ecology; statistical modeling of
complex systems of different nature and purpose. In the Republic of Belarus computer
data analysis and modeling have been developed successfully for more than 30 years.
Scientific conferences CDAM were held in September 1988, December 1990, December
1992, September 1995, June 1998, September 2001, September 2004, September 2007,
September 2010, September 2013, September 2016, September 2019 and September
2022 in Minsk.

The Proceedings of the CDAM’2025 contain 65 papers. The topics of the papers
correspond to the following scientific problems: robust data analysis; multivariate
analysis; statistical analysis of time series and random fields; probabilistic and
statistical analysis of discrete data; stochastics: theory and applications; statistical
methods for signal and image processing; econometric modeling and financial
mathematics; survey analysis and official statistics; data science: theory, visual
analytics, software and applications.

The Organizing Committee of the CDAM’2025 makes its acknowledgements to
the Belarusian State University, the Research Institute for Applied Problems of
Mathematics and Informatics for financial and technical support.
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ON THE ASSESSMENT OF THE IMPACT OF

THE STRUCTURAL COMPLEXITY OF

REGIONAL ECONOMIES ON GRP

M.Y. Afanasiev1, A.A. Gusev2

1,2Central Economics and Mathematics Institute of Russian Academy of Sciences
Moscow, RUSSIA

e-mail: 1mi.afan@yandex.ru, 2gusevalexeyal@yandex.ru

Current scientific discussions are focused on identifying professions and types
of economic activity that will become most in demand in the future and determine
priority areas for diversification of regional economies. Analysis of such trends
is important for forecasting the dynamics of GRP. The purpose of this work
is to construct an integral index of structural complexity on the basis of four
basic indices of economic complexity of regional economies, calculated by the
authors on the basis of data on the structure of employment, the structure of the
distribution of enterprises and the structure of GRP.

Keywords: regional economy; econometrics; economic complexity; integral
index; GRP.

1 Introduction

The transition from an economy based on the export of raw materials to a high-tech
economy and the strengthening of the economic security of regions involves an increase
in the complexity of production structures and economic systems. Recommendations
for the diversification of national and regional economies can be based on approaches
focused on increasing economic complexity [4–7]. For example, the paper [3] proposes
an approach to the selection of diversification areas based on recommendations for
the development of sectors, aimed at increasing the economic complexity of the
regional economy. The accumulated experience allows us to approach the problem
of a generalized assessment of the complexity of regional economies using the integral
index of structural complexity. To construct the integral index, various structures
of regional economies have been formed: the structure of GRP according to data on
production volumes by type of economic activity (TEA); the structure of employment
of regions by occupational groups; the structure of employment of regions by TEA; the
structure of the distribution of enterprises by TEA. Based on the concept of economic
complexity, the complexity of each structure is estimated and a corresponding basic
index of economic complexity is constructed [1; 2].

Figure 1 show 0-1 matrices describing the structures of strong TEAs and professional
groups of regions for four basic indices according to 2022 data. The rows of the matrices
correspond to regions, and the columns correspond to TEAs or occupational groups.
A dark cell of the matrix means that the corresponding element of the matrix is equal
to 1, that is, the TEA (or occupational group) is strong in the region. The rows are

9



Fig. 1. Matrices 0-1: region-TEA by GRP structure (left top); region-occupational group
on professional employment (right top); region-TEA by number of enterprises (left bottom);
region-TEA by number of employed (right bottom)
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ordered from top to bottom in descending order of the regions complexity scores. The
columns are ordered from left to right in ascending order of TEA (or occupational
groups) difficulty scores. Figure 1 combined with the difficulty scores provide insight
into the respective regional structures of strong TEAs, as well as the relationship
between regional difficulty scores on the one hand and TEAs on the other.

2 Model

Four approaches were used to construct integral indices of structural complexity:
component analysis, averaging, the principle of equal correlation with basic indices,
and the principle of proximity to the standard. To assess the impact of structural
complexity on GRP, the parameters of the production function with a built-in integral
index are estimated:

ln(V RPkt) = (α + α1 · t) · ln(Lkt) + (β + β1 · t) · ln(Kkt)

+ (s+ s1 · t) · nINTkt + (r + r1 · t) · dk + c · t+ const + εkt, (1)

where V RPkt is GRP of the region k in constant prices, Lkt is number of employees, Kkt

is cost of fixed assets, nINTkt is value of the components of the normalized integral
index of structural complexity, const is constant, εkt is regression error, t is time,
dk ∈ {0, 1} equals 1 for a group of regions with a general specialization, on the basis of
the aggregate of which the natural rent is estimated, r is valuation of natural resource
rent.

The integral index, built on the principle of proximity to the standard, shows the
best statistical characteristics when assessing the production function (1) according
to the data of 2019 and 2022 and is significant at the 5% level. Estimates of natural
resource rent and GRP elasticity in terms of the complexity structure of the index
make it possible to predict the impact of a wide range of federal and regional projects
on the growth of regional economies.
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DISTRIBUTIONS OF LENGTHS OF

EXCURSIONS OF A BROWNIAN BRIDGE

V.I. Afanasyev1

1Steklov Mathematical Institute of Russian Academy of Sciences
Moscow, RUSSIA

e-mail: 1viafan@mi-ras.ru

The paper shows distributions of the lengths of excursions of a Brownian
bridge, as well as the one-dimensional distributions of the meanders and inverse
meanders of the Brownian bridge.

Keywords: Brownian bridge; excursion of Brownian bridge; meander of
Brownian bridge.

Let {W0 (t) , t ∈ [0, 1]} be a standard Brownian bridge. Denote β (s) the time of
the last attainment by W0 of state 0 before s ∈ (0, 1) and denote γ (s) the time of the
first attainment by W0 of state 0 after s ∈ (0, 1). The interval (β (s) , γ (s)) is called
the excursion of the Brownian bridge straddling s; the intervals (β (s) , s) and (s, γ (s))
are called the left and right sides of the excursion, respectively.

The role of a Brownian bridge in mathematical statistics is well known. According to
Donsker’s theorem, an empirical process converges in distribution in the space D[0, 1] to
a Brownian bridge. From this theorem, in particular, follows the fundamental theorem
of mathematical statistics on convergence in distribution of Kolmogorov statistics to
the maximum of absolute value of a Brownian bridge.

Statisticians are interested in distribution of the length of excursions of a Brownian
bridge, i.e., the random variables ∆(s) = γ(s) − β(s), as well as distribution of the
lengths of their left and right parts, i.e., the random variables ∆1 (s) = s − β (s) and
∆2 (s) = γ (s) − s. Note that ∆ (s) = ∆1 (s) + ∆2 (s). We indicate the main result,
limiting ourselves to the value s = 1/2 and by setting ∆1 (1/2) = ∆1, ∆2 (1/2) = ∆2

and ∆ (1/2) = ∆.

Theorem 1. For 0 < a1 < a2 ≤ 1/2 and 0 < b1 < b2 ≤ 1/2

P (∆1 ∈ (a1, a2) ,∆2 ∈ (b1, b2)) =
1

π

a2∫
a1

b2∫
b1

dadb

(a+ b)3/2
√

(1− 2a) (1− 2b)
.

From Theorem 1, as corollaries, we obtain the following results.

Theorem 2. The random variable ∆ is absolutely continuous and its distribution
density has the form: for x ∈ (0, 1/2)

p∆ (x) =
1

πx3/2
arcsin

x

1− x
,

and for x ∈ (1/2, 1)

p∆ (x) =
1

2x3/2
.
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Theorem 3. For 0 < a ≤ 1/2

P (∆1 ≤ a) =
1

2
+

1

π
arcsin

6a− 1

2a+ 1
.

Theorem 4. For 0 < a ≤ 1/2

P (∆2 ≤ a) =
1

2
+

1

π
arcsin

6a− 1

2a+ 1
.

In addition to the lengths of a Brownian bridge excursion and their parts, it is
interesting to consider the Brownian bridge at these intervals. For each s ∈ (0, 1), we
introduce the following concepts:

excursion of a Brownian bridge:

W
(ex)
0 (t; s) =

|W0 (β (s) + t (γ (s)− β (s)))|√
γ (s)− β (s)

, t ∈ [0, 1] ;

meander of a Brownian bridge:

W
(me)
0 (t; s) =

|W0 (β (s) + t (s− β (s)))|√
s− β (s)

, t ∈ [0, 1] ;

inverse meander of a Brownian bridge:

W
(inv.me)
0 (t; s) =

|W0 (s+ t (γ (s)− s))−W0 (s)|√
γ (s)− s

, t ∈ [0, 1] .

First, we will indicate the auxiliary results.

Theorem 5. For 0 < a1 < a2 ≤ 1/2 and 0 < b1 < b2

P

(
∆1 ∈ (a1, a2) , W0

(
1

2

)
∈ (b1, b2)

)

=
1

π

b2∫
b1

be−b
2

db

a2∫
a1

e−b
2/(2a)

a3/2
√

1− 2a
da.

Theorem 6. For 0 < a1 < a2 ≤ 1/2 and 0 < b1 < b2

P

(
∆2 ∈ (a1, a2) , W0

(
1

2

)
∈ (b1, b2)

)

=
1

π

b2∫
b1

be−b
2

db

a2∫
a1

e−b
2/(2a)

a3/2
√

1− 2a
da.
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Set for x > 0

F (x) =
√

2

x∫
0

ue−3u2/4I0

(
u2/4

)
du,

where I0 (·) is a modified Bessel function of the first kind of order 0, i.e.

I0 (z) =
∞∑
m=0

1

(m!)2

(z
2

)2m

, z ∈ C.

We assume that s = 1/2 and we set

W
(me)
0 (t; 1/2) = W

(me)
0 (t) , W

(inv.me)
0 (t; 1/2) = W

(inv.me)
0 (t) .

As corollaries of Theorems 5 and 6, we indicate one-dimensional distributions of the
introduced processes at time t = 1.

Theorem 7. For x > 0
P
(
W

(me)
0 (1) ≤ x

)
= F (x) .

Theorem 8. For x > 0

P
(
W

(inv.me)
0 (1) ≤ x

)
= F (x) .
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The paper describes the capabilities of the R programming language to
decompose the gender gap in average hourly wages of workers by major
occupation groups using the Oaksaki-Blinder method.
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1 Introduction

Target 8.5 of Sustainable Development Goal 8 in the Republic of Belarus is “By 2030,
achieve full and productive employment and decent work for all women and men,
including for young people and persons with disabilities, and equal pay for work of
equal value” [1]. One of the indicators used to assess the achievement of this goal is
the gender gap in the average hourly wages of employees, calculated on the basis of a
sample survey of organizations on the wages of employees by personnel category and
occupation group (Form 6-t (occupations)). However, the unadjusted gender gap is
not a criterion of discrimination, as it does not take into account a number of factors,
such as occupational segregation, level of education, etc. Therefore, there is a need to
analyze the gender gap in order to identify the influence of various factors on its value.

This paper describes the application of the R programming language to decompose
the gender gap in the average hourly wages of workers by occupation group.

2 Model

The Oaksaki-Blinder method is widely used to decompose the gender gap. At the
first stage, the equations for male and female subsamples are estimated separately. In
general, the equation has the following form:

lnW = B0 +
∑

B ·X + e, (1)

where W are values of average hourly wages of men and women, B0 is a constant term,
B is a regression coefficient, X are professional characteristics of employees.

The overall difference in mean outcomes between gender groups is decomposed into
the effect of differences in the mean characteristics of men and women (composition
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effect) and the effect of returns to characteristics as differences in regression coefficient
estimates (wage structure effect).

We utilize the Oaxaca package of the R programming language for the purpose of
decomposition [2].

Neumark’s formula is applied to decompose the difference in average hourly wages:

lnWm − lnWf =
∑

(X
i

m −X
i

f ) ·Bi
t +
∑

(Bi
m −Bi

t) ·X
i

m

+
∑

(Bi
t −Bi

f ) ·X
i

f + (B0
m −B0

t ) + (B0
t −B0

f ),
(2)

where Wm, Wf are values of average hourly wages of men and women, X
i

m, X
i

f are
individual professional characteristics of men and women (in the studied example: the
average work experience in the organization, the proportion of men and women with
a certain level of education, the distribution of men and women in minor groups of
occupations), B0

t , B
0
f , B

0
m are constant terms of the pooled, female and male equations,

Bi
t, B

i
f , B

i
m are regression coefficients of the pooled, female and male equations.

In the specified formula (2), the first term reflects the explained part of the gender
gap, that is the difference in wages due to gender differences with the same impact on
the analyzed characteristics. The rest terms correspond to the unexplained part of the
gender gap. The regression coefficients of the pooled equation are used as reference
coefficients. It allows us to obtain more objective estimates and avoid bias associated
with the choice of a reference equation.

The data base of the calculations is an impersonal primary statistical database of a
sample survey of organizations on employee salaries by staff categories and occupation
groups for October 2024 (Form 6-t (professions)).

At the first stage, the average hourly wage of employees is calculated and the sample
survey observations are extrapolated by aggregated employee weights. To do this we
use the following code: (Figure 1):

The employee’s weight is rounded to the nearest integer value and the required
number of rows for each observation is duplicated accordingly.

Further, the data obtained is divided into the major occupation groups (where the
gender gap is more than 5 percent) and dummy variables for minor occupation groups
and educational level are created within each major group.

At the second stage, the gender gap is decomposed according to formula (2). The
command written in the R programming language for calculating the major group
“Specialists-professionals” is shown in Figure 2:

The results of the gender gaps decomposition are presented in Table 1.
The decomposition explains from 32.1% (for the major group “Employees engaged

in the provision of office administrative and support services, services to consumers,
preparation, processing of information and accounting”) to 89.2% (for the main group
“Unskilled workers”) of the gender gap in the average hourly wage. It can be noted
that in the groups with the highest gender gaps, only a small part of the gender gap
remains unexplained (for the major group “Specialists”, the unexplained part accounts
for 28.4% of the gender gap, for the major group “Unskilled workers” – 10.8% of the
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Fig. 1. Extrapolation of sample observation data

Fig. 2. Decomposition of the gender gap in the average hourly wage of the major group
“Specialists-professionals”

Table 1
Gender gaps in average hourly wages by major occupation groups,

explained part and contribution of factors, %

Major gr. Gender gap The explained part of the gender gap
Total Work exp. Educ. Minor gr.

Specialists-professionals 36,5 69,4 -5,0 2,1 72,3

Specialists 41,3 71,6 0,1 -0,3 71,8

Employees in
office/admin services,
consumer services,
information processing

31,2 32,1 9,1 2,8 20,2

Skilled workers in industry,
construction

11,5 46,6 -0,1 1,7 45,0

Operators, machinists,
assemblers

15,6 45,1 2,2 -1,1 45,1

Unskilled workers 40,3 89,2 2,6 0,6 86,0

18



gender gap). The insufficiently explained part of the gender gap in certain major groups
indicates that additional factors may be included in the proposed models.

The greatest contribution to explaining the gender gap is made by the uneven
distribution of men and women in minor groups of occupations (varies from 20.2% of
the difference in the logarithms of the average hourly wages of men and women in the
major group “Employees engaged in the provision of office administrative and support
services, services to consumers, preparation, processing of information and accounting”
to 86.0% in the major group “Unskilled workers”).

The conducted research proves that the unequal distribution of men and women
on various grounds (especially occupational segregation) has a significant impact on
the gender gap in average hourly earnings, and therefore an uncorrected gender gap
cannot be used as a criterion of discrimination. The presence of an unexplained part
indicates that additional factors may be included in the model (for example, the size
of the enterprize, type of economic activity, etc.).

The National Statistical Committee of the Republic of Belarus has carried out
an experimental calculation of the adjusted gender gap, which, according to data for
October 2024, amounted to 6% (unadjusted – 26.8%). The adjusted gender gap makes
it possible to eliminate the influence of individual characteristics of employees, while
taking into account such factors as: educational level, occupational segregation, the
influence of industry factors, work experience in the organization [3]. The resulting
value of the adjusted gender gap confirms the absence of significant differences in the
average hourly wages of men and women in the Republic of Belarus.
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The paper presents two methods for parameterizing quasi-periodic cycles in
price returns time series (we shall call such patters, rhythmic structures). Both
methods involve categorizing time series by discrete scaling of returns. The first
method is based on the property of the negative binomial distribution which
describes occurrence of named entities in natural texts (used in corpus linguistics
and NLP). The classification problem is solved according to the parameters of
the most frequently used words. The second method is based on reducing the
dimensionality of incidence matrices of text sequences to a dictionary using neural
networks. In both cases, it is possible to show the difference in the rhythmic
structure of text financial sequences related to different industries.

Keywords: time series; leap categorization; n-gram occurrence; negative
binomial distribution; neural networks.

1 Introduction

In time series analysis, quasi-periodic cycles (rhythmic patterns) are classified as
random, and if an adequate model is selected, the parameter estimates can be used in
problems of classifying and systematizing time series.

To measure the rhythmic characteristics of a time series, a linguistic model of the
negative binomial distribution (NBD) of word occurrence in texts is proposed [1]. To
do this, it is necessary to categorize the time series relative to its returns, compile
a dictionary of all possible patterns, and select from them those whose occurrence is
consistent with NBD.

Estimates of the NBD parameters of the most commonly used patterns can be used
as a set of time series characteristics.

Previously, for educational purposes, the model was successfully tested in the task
of classifying electroencephalograms of patients with cervical dystonia and epilepsy;
in this work, the dynamics of stock quotes on the Moscow Exchange stock market,
recorded at equal intervals from April 15, 2013 to September 3, 2024, were considered
as experimental data.

For the N = 80 sequences longer than 3,000 data points, the numerical return
values were replaced with letter codes as follows: a (if returns are no less 2%), b (from
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Fig. 1. Two-dimensional plot of parameter r, p estimates

1% to less than 2%, c (from 0.5% to less than 1%), d (from 0.25% to less than 0.5%),
e (between −0.25% and 0.25%), f (from −0.5% to less than −0.25%), g (from −1% to
less than −0.5%), h (from −2% to less than −1%), i (no more −2%).

We will recall the resulting categorical sequence of returns as the financial text
sequence, which can be divided into k parts.

We define an n-gram as a sequence of n symbols in the text sequence and construct
a sample x1, . . . , xk, where xi shows how many times the n-gram occurs in the i-th
part, i = 1, . . . , k, k = 31. For example, the 3-gram aii, which means an extremely
large increase followed by two extremely large returns falls.

We can calculate the average values of occurrence of aii, for example, in the text
sequence of Sakhalin-energo and TGK-2 are equal to 0.3 and 0.45, respectively, but
the greatest interest is in their distribution laws, which are consistent with NBD.

So, we consider the empirical distributions of the most frequent n-grams, n = 3 or
n = 4, and check their consistency with NBD.

2 The negative binomial distribution model of

n-gram occurrence

Let there be a sample x1, . . . , xk of occurrence of some n-gram in the text financial
sequence. By assumption, this sample is distributed according to the negative binom
β−(·|r, p) with probabilitis

pj =
Γ(r + j)

Γ(r)Γ(j + 1)
pr(1− p)j, j = 0, 1, 2, . . . .

The parameters are estimated using the maximum likelihood method [1]. For example,
in the case of Sakhalin-energo we have estimates r̂ = 0.18, p̂ = 0.4, and in the case of
TGK-2 estimates r̂ = 6, p̂ = 0.93. From this we can conclude that in the first case this
3-gram aii is generally less common, but is concentrated in a small time interval, and
in the second case it is found in a more sparse form.

Figure 1 shows a two-dimensional diagram of parameter estimates for 3-grams
from the text financial sequences under consideration. Note that the two-dimensional
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Fig. 2. Illustration of the division of the oil and gas and energy industries according to the
rhythm of financial instability

diagrams of parameter estimates in the case of analyzing the distribution of occurrences
of words in ordinary texts look similar.

As a result of using this model, we obtain a set of time series characteristics that can
be used to classify and systematize them. In the case of financial series, it is interesting
to check whether there is a difference by industry.

3 Classification of text financial sequences by

industries

The text financial sequences under consideration belong to six industries: banks,ferrous
and non-ferrous metallurgy, oil and gas complex, retail, energy. Based on the NBD
parameters of the most representative 3-grams: aii, aaa, iaa, eee, iii, iai, iia, aia, aai, a
linear classifier with an accuracy of 0.93 can be constructed.

For this purpose, we use the partial classification method [2]. Linear classifiers are
built based on the most informative combinations of 4 or 5 variables, and forecasting
is performed based on averaging the obtained partial forecasts (projective classifier).

Figure 2 shows a two-dimensional diagram of projective classifiers obtained from
partial classifiers by four and five variables, by which text financial sequences from the
oil and gas and energy complexes can be divided.

This separability can be obtained in another way. If for each text financial sequence
we construct a matrix of its occurrences in the dictionary, then using the Word2Vec
neural network with the Continuous Bag of Words and Skip-Gram architectures [3–5]
we perform a reduction in the dictionary dimension, then it can be found that for some
components from the obtained vector representation, the accuracy of classifying the
dynamics of oil and gas and energy complex quotes reaches the same 92 percent as in
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the parametric method with the NBD model.
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We study the exit times from a bounded interval for a nonlinear
autoregressive process of order one, denoted by X(f) := {Xn(f), n = 1, 2, . . . }
where the process is defined by the recurrence relation (1) with a continuous,
contractive function f : R1 → R1, a small positive noise parameter ε > 0, and a
sequence {ξn} of independent and identically distributed standard normal random
variables. Klebaner and Liptser (see [1; 2]) applied the large deviation principle
to obtain key asymptotic estimates for the exit times from the interval [−1, 1]
for linear AR(1) processes. Building on their results, G. Hognas and B. Jung [3]
derived upper bounds for exit times in the case of AR(1) processes driven by
several piecewise-linear maps on [−1, 1]. In the present work, we extend the
results of Hognas and Jung by considering a broader class of piecewise continuous
maps f . We show that, for this class, the asymptotic behavior of the exit times
depends critically on both the slopes and the locations of the breakpoints of f .

Keywords: autoregressive process; exit time; Markov chain; large deviation
principle.

1 Introduction

The study of exit times plays an important role in understanding the behavior of
stochastic processes, particularly in applications involving the evolution of populations
(see [4; 5]), finance analysis [6] surveillance analysis (see [7]) and many others. In
this work, we investigate the exit times of piecewise linear autoregressive processes
driven by Gaussian distributed noise. These processes, which generalize classical linear
autoregressive models, exhibit regime-dependent dynamics, making their statistical
properties and first-passage times particularly interesting. Let X(f) := {Xn(f), n =
1, 2, . . . } be a nonlinear autoregressive (AR(1)) process defined recursively by

X
(ε)
n+1(f) = f(X(ε)

n ) + εξn+1, n ≥ 0, X
(ε)
0 = x0 ∈ (−1, 1), (1)

where the contractive function f : R1 → R1 is continuous, ε > 0 is a small
positive parameter, and ξn is an i.i.d. sequence of standard normal random variables
(innovations). We introduce the exit time from the interval [−1, 1] (see [1; 3; 8]):

τ (ε)(f) := min{k ≥ 1 : | X(ε)
k (f) |≥ 1}.
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In the study of exit times for autoregressive models, various techniques have been
employed, including martingale methods, large deviation principles (LDP), and other
probabilistic approaches. Martingale techniques, in particular, have been used to
derive analytical approximations for the distribution and expectation of exit times
in AR(1) processes. These methods have been especially effective in analyzing
Ornstein-Uhlenbeck processes within a continuous-time framework. In [1] Klebaner
and Liptser established LDP for a general nonlinear autoregressive process defined
recursively by

X
(ε)
n+1(g) := g(X(ε)

n , . . . , X
(ε)
n−m−1, εξn+1),

where ε > 0, m ≥ 1 and g(x1, . . . , xm, y) is a continuous function. Furthermore,
consider the linear autoregressive AR(1) sequence X(λ) := {Xn(λ), n = 1, 2, . . . }
defined by

X
(ε)
n+1(λ) = λX(ε)

n (λ) + εξn+1, n ≥ 1, X
(ε)
0 = x0,

where {ξn} is a sequence of i.i.d. random variables, ξ1 ∼ N (0, 1), and λ is a nonrandom
constant. Applying the LDP to the linear AR(1) process X(λ) Klebaner and Liptser [1]
derived an upper bound for the expectation of exit times.

Theorem 1 ( [1]). Let τ (ε)(λ) be the exit time from the interval [−1, 1] of the random
process X(λ). If | λ |< 1, then

lim sup
ε→0

ε2 logEτ (ε)(λ) ≤ 1

2
(1− λ2).

Numerous authors have investigated different aspects of the exit time problem for
linear autoregressive processes (see, e.g., [9; 10]). A key open problem is extending
these results from linear contractive functions to nonlinear functions. In [4], Allen
et al. examined examples involving nonlinear contractive functions. The simplest
nonlinear extension is the case of piecewise linear functions, which serves as a natural
bridge between linear and fully nonlinear models. Hognas and Jung [3] studied AR(1)
processes with contractive functions f that are continuous, increasing, and have a fixed
point at x = 0. Notably, the problem of obtaining an upper bound for Eτ (ε)(λ) can be
reduced to finding the infimum of certain sums (see [1])

SN(y0, y1, . . . , yN) :=
N∑
i=0

(yi − f(yi−1))2.

2 Main results

In [3] Hognas and Jung established several key results concerning sums of the form
SN(f). Utilizing these results for specific piecewise linear functions, they obtained
upper bounds for lim sup

ε→0
ε2 logEx0τ

(ε)(f). Additionally, they computed the minimum

values of SN(f) for specific piecewise linear functions f (see [3] for further details). In
this work, we extend their analysis to AR(1) processes, considering piecewise linear
functions f with 3 breakpoints within the interval [−1, 1].
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Fig. 1. From left to right, the images display the set of functions C(up), C(int) and C(low)

We consider the class M of all functions f : R+ → R+ that are nondecreasing,
continuous and f(0) = 0. We introduce the following subclasses of M (see Figure 1).

• Let C(up) ⊂M be a class of functions f such that f(x) ≥ x on [0, 1];

• Let f ∈ C(int) ⊂M be a class of functions f such that f(x) ≥ x on [0, c] ⊂ [0, 1].
Moreover, f is linear and f(x) < x on outside of [c, 1];

• C(low) ⊂M denotes a class of functions f such that f(x) ≤ x for ∀x ∈ [0, 1], and
f is piecewise linear on [−1, 1] with 1 breaks. More explicitly,

f(x) =

{
α1x, x ∈ [0, c),

α2x+ β, x ∈ [c, 1),
c ∈ (0, 1].

Denote by Mc set of functions ϕf,g : R→ R defined for f, g ∈M by

ϕf,g(x) =

{
−f(−x), x ≤ 0,

g(x), x > 0.

We formulate our main results.

Theorem 2. Let ϕf,g ∈ M(c). Consider the random process X(ϕf,g) defined by (1).
The following statements hold.

• If f ∈ C(up) and g ∈ C(up), then for any |x0| ≤ 1,

lim
M→∞

lim
ε→0

ε2 logP

(
max

1≤k≤M
|X(ε)

k | ≥ 1 | X(ε)
0 = x0

)
= 0;

• In the case f, g ∈ C(int) ∪C(low), there exist non-positive constants K1(f), K1(g),
K2(f), K2(g) such that

lim
M→∞

lim
ε→0

inf
|x0|≤1

ε2 logP

(
max

1≤k≤M
|X(ε)

k | ≥ 1 | X(ε)
0 = x0

)
= min{K1(f), K1(g)},

lim
M→∞

lim
ε→0

sup
|x0|≤1

ε2 logP

(
max

1≤k≤M
|X(ε)

k | ≥ 1 | X(ε)
0 = x0

)
= min{K2(f), K2(g)}.
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Theorem 3. Assume that ϕf,g ∈ M(c) and X(ϕf,g) is defined by (1). The following
statements hold.

• If f ∈ C(up) and g ∈ C(up), then for any |X(ε)
0 | = |x0| ≤ 1,

lim
ε→0

ε2 logEτ (ε)(f) = 0;

• In the case f, g ∈ C(int) ∪C(low), there exist non-positive constants K1(f), K1(g),
K2(f), K2(g) such that

lim sup
ε→0

ε2 logEτ (ε)(ϕ) ≤ −min{K1(f), K1(g)},

lim inf
ε→0

ε2 logEτ (ε)(ϕ) ≥ −min{K2(f), K2(g)}.
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This work proposes a modification of the goodness-of-fit chi-square test. We
find the limiting distribution of the corresponding test statistic. A comparative
analysis of the test’s power is also carried out against well-known tests.
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1 Introduction

The classical goodness-of-fit chi-square test was first introduced by Karl Pearson in
1900. He also established the limiting distribution of the corresponding test statistic,
which made the method especially convenient for practical use in the pre-digital era.
The idea of the test is to divide the real line into m intervals and count the number of
observations in each interval. The test statistic is then computed as

χn =
m∑
i=1

(µi − np0
i )

2

np0
i

,

where µi is the number of observations in the i-th interval, n is the sample size, and p0
i

is the theoretical probability of the i-th interval under the null hypothesis.
One major drawback of this approach is its sensitivity to the choice of the

partitioning scheme, that can change the power of the test. Thus, it’s important
to construct chi-square tests that adapt the partitioning to the data. In particular, the
approach proposed by Heller, Heller, and Gorfine [1] offers an interesting direction in
this context.

In their work, the authors suggested using all possible partitions of the support. The
problem with this approach is that the test statistic does not have a known limiting
distribution. Because of this, a permutation method was used to calculate the p-value.
This approach is slow to run.

Our approach also uses a set of partitions, but the test statistic has a limiting
distribution. This makes it possible to compute p-values much faster.

2 Model

In this paper, we consider the following testing problem. Suppose we have a sample
of i.i.d. random variables X1, . . . , Xn with cumulative distribution function F . Let the
null hypothesis be H0 : F = F0 and the alternative be H1 : F 6= F0.
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We propose the following adaptive version of the chi-square test. We first divide
the real line into N initial intervals such that each interval has equal probability under
F0. These intervals are then grouped into k cells, where each cell is a union of several
adjacent intervals. The length of a cell is defined as the number of original intervals it
contains.

Let p denote the probability of falling into each of the N intervals under the null
hypothesis.

For each possible grouping into k cells, we compute the chi-square statistic, treating
each cell as a single interval. The final test statistic is defined as the sum of all chi-square
statistics over all such groupings.

Let us now formalize this. Let V be the set of all possible partitions. Then the
statistic can be written as:

Sn =
∑
v∈V

k∑
jv=1

(νjv1 + · · ·+ νjvl − lpn)2

lpn
,

where l is the length of the cell indexed by jv in the partition v. Here, νjvr , r ∈ {1, . . . , l}
denotes the number of observations in the r-th interval of the cell indexed by jv.

This statistic can also be expressed in the form:

Sn =
1

np

N∑
i,j=1

αij(νi − np)(νj − np),

which can be written in a matrix form as Sn = XnAX
T
n , where

Xn =

(
ν1 − np√

np
, . . . ,

νN − np√
np

)
,

and A = {αij} is an N×N matrix. The values αij depend on the parameters N and k.
The matrix is too complicated to present here, so we will describe it during the report.

We now state the main theorem:

Theorem 1. Under the null hypothesis, the following convergence in distribution holds:

Sn = XnAX
T
n

d→ ZTMZ, n→∞,

where Z is a column vector of dimension N − 1 with a standard multivariate normal
distribution, and M is a symmetric positive definite matrix of size N − 1.

The structure of the well-known matrix M will be discussed in the report.
The limiting random variable can be represented as follows:

ZTMZ ∼
N−1∑
i=1

λiW
2
i ,

where Wi ∼ N (0, 1) are independent standard normal random variables, and λi, i =
1, . . . , N − 1, are the eigenvalues of the matrix M .

Several methods for approximating such weighted sums of chi-squared random
variables are discussed in [2]. These methods were used to evaluate the power of
the proposed test.
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3 Examples of Results

We examine the proposed test for different values of the hyperparameter N . It is
compared with the classical chi-squared test, the Kolmogorov-Smirnov test, and the
Cramer-von Mises test.

As an illustrative example, consider the case H0 : F = F0, where F0 ∼ N (0, 1), and
the actual data come from the distribution Laplace(0, 1/

√
2). The left plot on Figure 1

shows the probability density functions, and the table on the right presents the power
values.

Fig. 1. Results: density functions (left) and comparison of test power (right)
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Information about the current mode of the electric power system (EPS) is
received by the dispatch control centers in the form of telemetry and tele-signals
by the SCADA complexes, and from phasor measurement units (PMU) devices.
Tele-measurements include information about the mode parameters, and the state
of the switching equipment. Since the system of equation of state is nonlinear,
the problem of state estimation is traditionally solved using iterative methods.
This article presents the results of solving the state estimation problem using a
method based on the Kipnis-Shamir re-linearization method, which allows solving
it by non-iterative method. The results of the solution are given on the example
of a power transmission line with 500 kV voltage.

Keywords: measurements; state estimation; PMU; polynomial equations;
relinearization.

1 Introduction

The main trend in development of the modern electric power industry is a control
intellectualization. Traditionally, information about the current EPS mode Y = [Pij,
Qij, Iij, Pi, Qi] entered the dispatcher control centers in the form of telemetries and
tele-signals [1–4].

Since for monitoring the state of the entire power system as a whole, the telemetries
from SCADA (Supervisory Control and Data Acquisition) are insufficient and contain
errors, for specification of telemetries and calculating unmeasured parameters the state
estimation (SE) methods are used.

To monitoring, analysis and operational control of the EPS after SE, the calculation
of the steady state (current state) of the electric power systems (EPS) is performed.

In modern conditions the EPS control requires real-time execution of SE of large
and complex power systems.

SCADA complexes receive and process distant information once a second, without
synchronizing measurements in astronomical time. New measuring equipment -
PMU (phasor measurement units) - has been applied with invention of satellite
communication systems. Unlike SCADA, PMU measurements are Y =[Ui, Iij, δi,
ϕij].

Measuring systems for monitoring, control and protection of the power system
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(WAMS) consisting of PMU devices allow of obtaining a more real state of the power
system [5;6].

State estimation of the entire EPS based on the PMU measurements only is
currently impossible due to the high cost of the corresponding equipment; therefore,
they are usually installed at the most critical facilities.

The mathematical basis of the problem of the SE of EPS is the least square method.

2 Traditional state estimation

At classical formulation of the SE problem, the criterion

ϕ (x) = (ȳ − y (x̂))T R−1
y (ȳ − y (x̂))→ min,

is minimized, where x = (δ, U) is the state vector, consisting of magnitudes U and
phase angles δ of voltages of all nodes of the EPS circuit, except the basic node phase;
y = f(x) – measured mode parameters; z = f(x) – unmeasured mode parameters; Ry

– is a diagonal matrix, the elements of which are the measurement dispersions [1–4].
The state equations are nonlinear, therefore, the SE problem is solved by the

iterative method, for example, the weighted least-squares method.
At each iteration, corrections:

∆xi =
[
HT
i ·R−1

y ·Hi

]−1 ·HT
i R
−1
y [ȳ − y (xi)] ,

and the next approximation xi+1 = xi−∆xi are calculated, where H is measurements
Jacobi matrix.

The following initial information can be used as initial approximations of the state
vector:

• measurements;

• pseudo-measurements;

• rated values of voltage magnitude and zero values of voltage phases.

Then all unmeasured mode parameters are calculated through the state vector.
To solve the SE problem, the method of test equations (TE) was developed and

implemented in the form of program in [2]. The TEs are steady state equations. These
equations include measured mode variables and variables calculated through measured
ones only.

When PMU and SCADA measurements are used together, the SE problem retains
all the disadvantages inherent in traditional state estimate;

• problems in validation due to significant difference in accuracy of PMU and
SCADA measurements;

• bad conditionality of the Jacobi matrix and due to this fact, a slowing down of
the convergence of the iterative process.
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3 Using of phasor measurements in solving of the

EPS SE problem

Installation of PMU in the EPS nodes allows of using new high-accuracy measurements.
At that, the redundancy of measurements increases, which contributes to the detection
of glaring errors in telemetries and improves the quality of the state estimation. The
main types of measurements received from the PMU are magnitudes and phases of
nodal voltages (Ui, δi) and currents (Iij, ϕij) in outgoing lines.

The initial information for the SE problem is SCADA and PMU measurements,
physical and calculated PMU and PM of power flows. The measurement accuracy of
the ”calculated” PMU is almost equal to the measurement accuracy of the physical
PMU. Accuracy of pseudo-measurements of power flows is significantly higher than
the accuracy of telemetries in SCADA. This is due to the high accuracy of the PMU
measurements. The TEs method by using PMU measurements also allows of checking
the quality of SCADA measurements.

For example, when a PMU is installed in separate node, each PMU installed in
the node can provide measuring the magnitudes and phase of the voltage in that node
and the magnitudes and phases of currents in the outgoing lines. Independent voltage
measurements in one node can be used for the validation of these measurements [1;2].

Iterative methods work well for state estimation, but these methods require
an initial approximation and can encounter convergence problems if the initial
approximation is too far from the actual state of the system. Large dimension of
circuits, complexity and need for the high-speed performance require the development
and applying of special algorithms and computational procedures for the SE.

Traditional state estimation methods do not meet the speed requirements. PMU
measurements are carried out with a high sampling rate. Therefore, it is possible
to estimate the state of individual elements of the EPS (power plants, substations,
electrical network zones) in the ”rate of process” with very high accuracy.

Linear state estimation of EPS based on PMU measurements is performed in one
iteration [6].

In this case, the state vector and the measurement vector are, respectively, equal
to

x =

[
U̇i = U ′i + j · U ′′i
U̇j = U ′j + j · U ′′j

]
, ȳ =


U̇i = U ′i + j · U ′′i
U̇j = U ′j + j · U ′′j
İij = I ′ij + j · I ′′ij
İji = I ′ji + j · I ′′ji

 ,
The measurement vector is related to the EPS state vector as ȳ = H · x,where

H =


1 0
0 1

Ẏij + Ẏi0 −Ẏij
−Ẏij Ẏij + Ẏj0

 ,
is the Jacobi matrix.
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The linear state vector is calculated as:

x =
[
BTR−1B

]−1
BTR−1z.

4 State estimation based on re-linearization

method

The SE considered in [7] is based on the Kipnis-Shamir relinearization method [7].
In this method measurement equations, which are the voltage value at the node of
the power line and the equations for the driving power of the node are formulated
using rectangular coordinates of the bus voltages. At such formulation nonlinear
measurement equations become quadratic voltage polynomials [8]. Then the method
uses two transformations of the original system to the high-dimensional equations
system with the quadratic variables to solve using non-iterative method. At accurate
measurements this method gives the same results as the weighted least squares method.

The initial data required for the method is the system topology, information about
the mode parameters and measurements from the system.

If the transmission line parameters are expressed using the π-model and the
measurements are voltage magnitudes and linear flows, then the measurement
equations have the form [8;9]:

U2
i = U2

iR + U2
iI ;U

2
j = U2

jR + U2
jI ;

Pi,j = gi,j
(
U2
iR + U2

iI − UiRUjR − UiIUjI
)

+ bi,j (UiIUjR − UiRUjI) ;

Qi,j = bi,j
(
U2
iR + U2

iI − UiRUjR − UiIUjI
)

+ gi,j (UiRUjI − UiIUjR) + bs
(
U2
iR + U2

iI

)
;

gij =
Rij

Z2
ij

, bij =
Xij

Z2
ij

, Z2
ij = R2

ij +X2
ij,

where i is the sending node; node j is the active power receiving node, Rij, Xij and bs
are the active resistance of line, reactance and conductivity to earth, respectively.

Since these equations are linear with respect to the quadratic voltage terms (U2
iR;

U2
iI ; UiRUjR, etc.), they can be represented in matrix form

Aξξ = C, (1)

where C, ξ, Aξ are the vector of measured values, the vector of quadratic voltage
variables, and the matrix of coefficients for ξ, respectively. The vector ξ consists of the
quadratic variables of the real and imaginary parts of the voltages denoted by xixj,
where the indexes i and j are not associated with the numbers of the nodes.

5 First transformation of variables

Transformation of variables is performed, and system (1) is rearranged in the following
form

[AB]

[
Y
Z

]
= C
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where A contains linearly independent columns Aξ, and B contains the remaining
columns Aξ, Y is vector of elements ξ corresponding to A, and Z is vector of elements
corresponding to B.

Let us denote the quadratic variables xixj in Y as y1; . . . ; yNy , and by Ny we denote
the total number of variables Y . Quadratic variables xixj in Z we denote as z1; . . . ; zNz
in the order and through Nz the total number of Z-variables.

In addition, all quadratic variables containing the imaginary component of the
balancing node and the corresponding columns of the matrix are excluded from the
system, in the balancing node since a zero imaginary component is specified.

The Y variables in the rearranged system can now be expressed in terms of Z
variables and measurement values C:

Y = d+D · Z, d =
(
ATA

)−1
ATC, D = −

(
ATA

)−1
ATB.

6 Second transformation of variables

At this stage combinations of paired products of quadratic variables are formed
according to certain rules. Correct paired products meet the condition:

sijspq = (xixj) (xpxq) = (xixp) (xjxq) = sipsjq.

These pair product ratios are used to impose additional constraints on the unknowns
so that a correct solution can be obtained. For the paired products to be valid, the sij
and spq must exist among the set of quadratic variables Y and Z, and the sij and spq
can not be the same pair as sip and sjq. For each correct paired product, one equation
can be generated in the form: sijspq − sips0. More details on this can be found in [8].

7 Simulation

The simulation was carried out for 350 km long 500 kV power transmission line (PTL)
(see Figure 1). In [10], simulation of the mode of such line was carried out by using
the equations of the line with distributed parameters.

Fig. 1. Two-node π-scheme of the PTL
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OHL parameters in relative units R = 0.0046;X = 0.04186; g = 0.014; b = 3.2. The
measurements are: U1 = 520.06 kV; U2 = 490 kV; P12 = 935.18 MW; Q12 = 80.07
MVAr. The results of calculation of the steady state of the PTL are presented in the
Table 1.

Table 1
Results of steady-state of the PTL

Bus Voltage Ang Generation Load
Mag (pu) (deg) P, MW Q, MVAr P, MW Q, MVAr

1 1.042 0 935.18 80.07 0 0
2 0.973 -22.64 0 0 900 50

Branch From Bus To Bus From Bus Injection1 To Bus Injection 2
P, MW Q, MVAr P, MW Q, MVAr

1 1 2 935.18 80.07 -900 -50

Total power losses are: 35.184 MW, 362.76 MVAr.
The bus admittance matrix is

Y BUS =

(
2.30242 −22.03152i −2.29542 +23.66652i
−2.29542 +23.66652i 2.30242 −22.03152

)
.

Forming of measurement matrixes and coefficients C, A, B, d, D.
Passing to the original designations, we get:

xSE1 :=
√
ynew1 = 1.042,

xSE3 := δ1 = 0,

xSE4 := −
√
z1 = −0.3655,

xSE2 :=
√
ynew2 = 0.90174.

8 Conclusion

The advantage of the SE based on the re-linearization method is that it does not have
the disadvantages of the convergence problem.

Compared to traditional weighted least squares method, the non-iterative method
requires more measurements for observability. The traditional method can solve cases
with 3 or more measurements. This is because the non-iterative method tries to
compute the solution, while the least squares method repeats in the direction of the
solution.

The results of applying the method on 500 kV PTL is presented.
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A model with mixed data sampling MIDAS and combined forecasts based on
them has been developed for short-term forecasting and naucasting of the real
GDP growth rates of the Belarusian economy. A comparative analysis of the
forecast accuracy for the constructed models indicates their effectiveness.
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1 The problem and purpose of research

Key macroeconomic indicators, like Gross Domestic Product (GDP), are produced
quarterly by the National Statistical Committee of Belarus, while timely measures
such as the Composite Index of Economic Sentiment (CIES) are published monthly.
The quarterly GDP estimate is released 90 days after the quarter ends.

Classical regression models require data of the same frequency. Data alignment can
be achieved by aggregating high-frequency variables or interpolating low-frequency
ones, though the latter is rarely used. Aggregation may lead to a loss of information
about the explanatory variable dynamics, reducing model accuracy.

This study employs MIDAS (Mixed Data Sampling Model) [2] to incorporate
high-frequency data for forecasting macroeconomic indicators in Belarus [3].

The objective is to develop MIDAS regression models for short-term forecasting and
nowcasting of real GDP growth rates in Belarus, using monthly economic indicators. A
comparative analysis of forecast accuracy is conducted based on the constructed mixed
data models and combined forecasts.

The research addresses the following tasks: 1) testing the stationarity of annual
GDP growth rates and seasonally adjusted CIES; 2) constructing econometric models
U-MIDAS, MIDAS-GETS, and MIDAS-GETSIS; 3) generating combined forecasts
using traditional methods; 4) comparing the forecasting capabilities of the models
for predicting growth rates in the Belarusian economy based on CIES.
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2 Mixed frequency models

During the research, the following specifications of MIDAS models were considered:
1) U-MIDAS model; 2) MIDAS-GETS, implementing the ‘general to specific’ approach;
3) MIDAS-GETSIS, a modification that incorporates dummy variables.

The U-MIDAS model (unrestricted mixed data sampling) is defined as [4]:

yt = µ+ α1yt−1 +
K∑
k=1

zk,t−1 +
L∑
l=1

γldl,t +
k∑
i=0

mi∑
j=0

β
(i)
j x

(i)
tmi−j + εt, t = 1, . . . , T, (1)

where yt and yt−1 are the low-frequency time series of the endogenous variable and its
lag; zk,t−1 represents the low-frequency time series of exogenous economic variables;

x
(i)
t denotes the higher-frequency explanatory factors; mi is the number of observations

of the explanatory variable for one value of the dependent variable. The U-MIDAS
model is linear in the parameters

{
β

(i)
j

}
and can be estimated using Ordinary Least

Squares (OLS) method.
The MIDAS-GETS and MIDAS-GETSIS models implement the “general

to specific” approach [1]. A repetitive algorithm sequentially removes one variable at
a time from the model and checks for significance using diagnostic tests (normality,
autocorrelation of residuals, etc.). If a variable is found to be insignificant, it is
removed, leading to the formation of final model combinations. After calculating all
possible combinations, the final models are compared using an information criterion for
selection. The best model is then chosen. In the case of the MIDAS-GETSIS model,
if the analyzed data contain selections and structural breaks, modeling from ‘general
to specific’ using saturation indicators allows for the assessment of metrics by dividing
them into specific samples and adding dummy variables.

3 Model construction and forecast accuracy

evaluation

The following time series are used: GGDP — annual growth rates of GDP of the
Republic of Belarus (RB), calculated by the income method, at quarterly frequency
(in %); CESI SA — seasonally adjusted CIES (Figure 1).

The stationarity of the time series was tested using the Break Point Unit Root
(BPUR-test) [5]. The results for various specifications of the tested model, differing in
the inclusion of a constant c and a linear trend t (Table 1), indicated that both GGDP
and CESI SA are stationary at a significance level of 0.05.

3.1 Results of the MIDAS model constriction and combined
forecasts

In this study, forecasts for future periods were made using the proposed models with
an expanding window, evaluated from 2016Q4 to 2023Q2. Starting in 2023Q2, the
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Fig. 1. a) GGDP; b) CESI SA

Table 1
Results of time series testing using the BPUR test

Time
series

Model
includes

ADF-
statistics

Critical values
at the sig. level

ε = 0.05

Moments of
struct. changes

Type of
model

GGDP c -6.134 -4.444 2022Q3 (AO) TS
CESI SA c, t -5.843 -4.860 2019M10 (AO) TS

evaluation period was extended by one quarter, with forecasts calculated for 2023Q3
to 2024Q4. Six point forecasts of GDP growth rates were compared with actual data,
and forecast accuracy metrics, including MAE and RMSE, were calculated.

The U-MIDAS, MIDAS-GETS, and MIDAS-GETSIS models utilized annual
GDP growth rates for RB as the endogenous variable. Each model included
quarterly regressors: a constant, the lagged variable GGDP(-1), and the dummy
variable DUM2022Q2. The high-frequency variable used was CESI SA, with the
MIDAS-GETSIS model excluding the dummy variable.

When selecting a model for further use, it is crucial to consider the model with
the minimum accuracy metrics. However, over time, another method may prove more
accurate, making combined forecasts an optimal solution. This is particularly relevant
given changing data and external factors that impact forecasting accuracy.

Combined forecasts were constructed using various weighting approaches.
Specifically, the following methods were used [6]: equal weights (MIDAS-AVER);
weights from OLS (MIDAS-OLS); inverse values of the loss function (MIDAS-MSE);
and inverse values of the ranks of the loss function (MIDAS-RANKS).

Figure 2 shows the actual values and forecast results of real GDP growth rates
generated by the MIDAS models and the combined forecasts.

3.2 Comparative analysis of forecast accuracy

Based on the comparative analysis of forecast accuracy metrics (Table 2), the combined
forecast MIDAS-MSE shows superior accuracy compared to the other models.
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Fig. 2. Actual and forecasted values of GGDP based on: a) MIDAS models; b) combined
forecasts

Table 2
Results of evaluating the accuracy of MIDAS models and combined

forecasts

Model RMSE MAE
U-MIDAS 1.403011 1.112751

MIDAS-GETS 0.867813 0.742120
MIDAS-GETSIS 1.100931 0.780526
MIDAS-AVER 0.759032 0.585382
MIDAS-OLS 0.801509 0.628978
MIDAS-MSE 0.768115 0.552095

MIDAS-RANKS 0.782078 0.569598
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4 Conclusion

The following main results were obtained: 1) various modifications of the MIDAS
regression model were constructed based on mixed-frequency data, intended for
short-term forecasting and nowcasting of the real GDP growth rate of RB on a
quarterly basis based on monthly economic indicators; 2) different combined forecasts
were created using standard combination methods; 3) a comparative analysis of the
accuracy of autonomous and combined forecasts of the target indicator was performed,
identifying optimal conditions for addressing the target problems.

The obtained results, including forecast models and methods for combining
forecasts, should be utilized as components of quarterly forecasting tools for assessing
the target indicator prior to the release of official values.
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1 Introduction

Modern meteorology often requires the processing of large volumes of data that
affect many areas of human activity, including aviation, agriculture, and emergency
management. Processing such data to identify hidden patterns and forecast them is
challenging due to the complexity of constructing mathematical and physical models
of the atmosphere, high computational costs, and insufficient accuracy of the results
obtained. According to the study [1], statistical analysis methods are best suited to
address this problem [2].

The aim of this work is to develop a program capable of primary processing of
obtained temperature and wind field data using statistical analysis methods to convert
them into a form suitable for further development of algorithms for spatial interpolation
of meteorological data.

2 Main part

The work used data from daily measurements of temperature, zonal and meridional
wind components for the July and January months during the 2004–2014 period [3].
Measurements were made at stations located near the cities of Bologoye, Smolensk,
Moscow, Sukhinichi, Ryazan, and Kursk at 00:00 and 12:00 GMT. For each weather
station, vertical profiles were converted into heights in geometric meters and data
arrays were generated at altitudes of 0 (ground level), 100, 200, 300 and 400 m [4].
During statistical processing, the hypothesis of normality of temperature and wind
distributions was tested at all the stations and heights. Additionally, spatial correlation
and autocorrelation functions were constructed to assess the dependencies between
measurements taken at different spatial locations.
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First, the average values of meteorological variables for each station and the daily
average values for all stations at all altitudes were calculated separately for 00:00 and
12:00 hours.Then, for each station at all altitudes, the deviations were determined as
the differences between the actual values of the meteorological quantities at this station
and the average value of the corresponding quantity at all stations for that day.

At the next stage, we studied short-term temporal dependencies (1 to 8 days).
For this purpose, we calculated the autocorrelation coefficients of the meteorological
fields for all stations at all altitudes separately for 00:00 and 12:00 hours. In this way,
autocorrelation functions are constructed. Figure 1 shows graphs of the autocorrelation
coefficients of temperature values (July, 00:00, altitudes of 300 m and 0 m, Moscow)
over 8 days, illustrating the attenuation of correlation with increasing time lag. The
attenuation occurs faster at altitudes above 100 m due to the reduced influence of the
surface layer.

Fig. 1. Autocorrelation coefficient of temperature fields: height 300 m (left picture); height
0 m (right picture)

In addition, the study showed higher autocorrelation coefficients of temperature
in winter. This may be due to the fact that cold air masses can persist for a long
time, providing stable low temperatures. The constructed series of autocorrelation
coefficients of the zonal and meridional components of the wind show the nature of the
time dependence of the wind speed on its previous values. A comparative analysis of
the autocorrelation coefficients of the fields of zonal and meridional wind components
at different altitudes shows significantly different dynamics of the wind regime (Figure
2). For example, at an altitude of 300 m, a faster attenuation of correlations is observed
than at the level of the Earth’s surface (altitude 0 m). This could be explained by the
fact [5] that the relief features create more stable air flows with a ’long memory’ of the
process. At high altitudes, the influence of the surface weakens, air flows become more
turbulent, and more quickly lose correlation with previous states.

To study the relationships between meteorological fields at various observation
points, average values for each station and daily average values for all six meteorological
stations were calculated. Then, daily deviations of this values from the average were
calculated and the data were averaged over 6 days. Correlation matrices were also
calculated. All of the above calculations were performed separately for each altitude
and each time. As an example, we present the correlation coefficient values for the
Moscow station (Figure 3).
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Fig. 2. Autocorrelation coefficients of the zonal wind component fields, 00:00, January: height
0 m (left picture); b) height 300 m (right picture)

Fig. 3. Spatial correlation coefficient of Moscow station, height 0 m, July, 12 hours

Similar calculations were performed for the zonal and meridional wind components.

3 Results

To perform the presented calculations and visualize the results, a specialized software
application was developed, which allows users to:

• enter time series of measurement data at different altitudes from different
meteorological stations;

• calculate autocorrelation and spatial correlation functions with the ability to
select maximum lag;

• visualize results in the form of graphs and diagrams;

• save numerical values of statistical characteristics in tabular format for further
analysis.

The application is implemented using modern libraries for statistical data analysis and
graphing, enabling comparative analysis of meteorological data collected at different
stations depending on altitude, time of day, and season. This software solution
significantly simplifies the study of meteorological data by allowing quick assessment
of the temporal and spatial structure of the relevant fields, as well as, preparing the
data for further forecasting.

45



4 Conclusion

The statistical analysis of meteorological fields of temperature and wind not only
enhances understanding of regional climatic conditions but also offers valuable benefits
in various economic sectors, including agriculture, transport, and energy. By
quantifying spatial and temporal variability, these analyses support improvements
in weather forecasting models and inform the development of adaptation strategies
to changing weather patterns. Looking ahead, expanding the functionality of
meteorological analysis software-such as adding 3D visualization of time series,
implementing automatic anomaly detection, and integrating with databases for
real-time updates-will further enhance the capacity to analyze and respond to complex
weather dynamics. This aligns with trends in leveraging advanced data analytics and
climate model outputs to support economic decision-making and resilience planning in
the face of climate variability and change.
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1 Introduction

In the weakly supervised learning problem, the possible uncertainty or fuzziness of
the labeling is taken into account, see review [1]. The proposed study focuses on the
weakly supervised multiple instance learning problem (WSMIL) in the context of group
classification, where each set, called a bag, can include different objects. The case of
binary classification is considered: one of the classes is conventionally called positive
and the other is called negative. A bag is labeled as positive if it contains at least one
positive object (which one is unknown); otherwise the bag is labeled as negative. It is
required to predict the presence or absence of positive objects for new bags.

The proposed approach to solving the problem is based on the selection of an
informative feature space, selection of bags for training, and an ensemble (hybrid)
approach. Automatic bag selection can be considered as a procedure for self-training
of the algorithm by self-correction of the sample. The developed method was tested on
the problem of protein identification. The results of applying the algorithm developed
and comparing it with a number of well-known algorithms are presented.

2 Problem Description and Notation

Let there be a statistical population Γ of objects b ∈ Γ described by a set of features
X = {X1, . . . , Xd}, where d is the dimension of the feature space. Let ~x = X(b)
(~x ∈ Rd) denote the set of feature observations for object b, where ~x = (x1, . . . , xd),
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xj = Xj(b), j = 1, . . . , d. A metric r is given that allows one to calculate the distance
between any pair of objects in the population, both in the feature space defined by X,
and in any of its subspaces. Each object in the population b ∈ Γ belongs to one of two
classes (patterns), conventionally called positive and negative. Let us denote the set
of all possible bags by B. Let a bag B ∈ B contain objects b1, . . . , bm, m = |B|. Let
Y ∈ {−1, 1} denote the class corresponding to the bag. The bag is marked as positive
(B+) if Y (B) = 1, otherwise as negative (B−), i.e. Y (B) = −1.

For an arbitrary chosen bag B ∈ B, it is required to predict its membership
f(B) to classes. To construct the decision function, the information contained in
the training sample (B1, Y1) . . . , (Bn, Yn) is used, where n is the number of bags
in the sample. The pair (Bi, Yi) defines the set of objects included in the bag:
Bi = (bi1, . . . , bimi), and its membership in the classes: Yi ∈ {−1, 1}. The quality
estimate (risk of incorrect classification) for the decision found can be obtained from
the test sample of bags formed independently of the training sample. When solving the
problem, quality metrics are used that take into account the data imbalance: Sens =
TP/(TP + FN) denoting the proportion of true positive predictions (sensitivity);
Spec = TN/(TN +FP ) indicating the proportion of true negative labels (specificity);
and BA = (Sens + Spec)/2 implying the balanced accuracy. Here TP is the number
of true positive results, TN is the number of true negative labels, FP is the number of
false positive predictions, FN is the number of false negative cases. We will consider
the balanced accuracy (BA) as an indicator of the quality of the problem solution.

It is required to build a model that allows predicting the target feature for new
bags. The problem under consideration is relevant for many applied tasks, since the
annotation of the available data may not be accurate due to poor study of the problem
under consideration, lack of resources for careful labeling of objects, the presence of
random distortions that arise in the process of label identification, as well as due to
other reasons that determine the specifics of the problem being solved.

3 The proposed method

In machine learning problems, it is often necessary to solve two additional
sub-problems: the selection of an informative feature space and the formation of an
informative (from the point of view of a given criterion) and representative training
sample. Elements of the training sample, in the case of multiple instance learning
problem, are bags (sets of objects). Both the selection of informative features and
the removal of noise bags (outliers) are carried out based on the analysis of the local
environment of the bags. Our approach is based on the hypothesis of local compactness;
the solution uses the nearest neighbor method (kNN), k = 1.

The following distances (where r is the Euclidean distance) are considered as the
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distance R between bags (groups of objects) A and B:
Rmin(A,B) = min

a∈A,b∈B
r(a, b), by the ”nearest neighbor” principle;

Rmc(A,B) = 1
|A||B|

∑
a∈A,b∈B

r(a, b), by the ”average linkage” principle;

RW (A,B) = |A||B|
|A|+|B|‖~̄xA − ~̄xB‖

2, by Ward’s method.

(1)

When analyzing poorly studied material, a large number of characteristics
describing objects are often used. To solve the problem of constructing a subset of the
most informative characteristics, a large number of algorithms have been developed,
an overview of which can be found in [2].

The presence of various types of errors in observations leads to a deterioration in
the quality of the obtained patterns. The strategy of removing those training sample
bags that are poorly described by the model, is sustainable if reducing sample size
does not affect its representativeness. When removing outlier bags, the FRiS function
(Function of Rival Similarity) [3] is used:

F (C,B−|B+) =
R(C,B+)−R(C,B−)

R(C,B+) +R(C,B−)
,

which specifies the measure of similarity of bag C with the −bags in competition with
the +bags. Rival similarity of bags to classes is determined by the same principle as
competitive similarity between bags. As the distance from a bag to a class, we will
use the distance to the nearest bag of this class. If F (C,B−|B+) > 0, then bag C
is considered more similar to the negative class, otherwise to the positive one. The
strategy for removing outlier bags depends on the problem peculiarities: data volume,
sample balance, etc.

Using the specified distances (1), the solution variants are designed. The final
decision is made by voting of decision rules. Further on, we will call the proposed
method as Feature Selection and Sample Filtering (FSSF).

4 Experimental study

The efficiency of the proposed method was assessed for the problem of identifying
proteins containing structures with the thioredoxin fold (+bags) and those not
containing these structures (−bags) [4]. Figure 1 shows an example of the thioredoxin
fold.

The data table contains 26611 objects in an 8-dimensional feature space. The
features describe the chemical properties of protein regions: molecular weight,
hydrophobicity indices, solubility, etc. The number of bags is 193, including 25 +bags
and 168 −bags. The bag sizes range from 35 to 189 objects. In [5], when solving this
problem for classification, an SVM-based cross-validation algorithm with one +bag
being excluded, is proposed (the so-called jack-knife test).

The data were preliminarily normalized to the range [0, 1]. A random number
generator selects 20 +bags of the + class and 160 −bags of the − class. The sample of
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Fig. 1. An example of a thioredoxin fold. The spatial topology of the alpha/beta protein fold
consists of a four-stranded antiparallel beta sheet sandwiched between three alpha helices

−bags is divided into 8 parts. For the distances R specified in (1), informative feature
subspaces of dimension d∗ ∈ {3, 4} are formed for each of the 8 training samples by
exhaustive search taking into account the structural features of proteins [5]. When
filtering the training sample, no more than 4 outlier bags of the positive class are
removed. The control is carried out in accordance with the jack-knife test. The final
decision is made by the majority vote of the decision functions. The quality assessment
of the solution is calculated based on the above-specified metrics.

Table 1 shows the quality estimates for the proposed algorithm and a number of
known algorithms for solving the WSMIL problem. For the ease of comparison, the
estimates given in [6] have been converted into comparable metrics. The comparison
results show that the proposed algorithm provided a higher quality of classification.
When the algorithm was running in the mode without filtering, the following estimates
were obtained: Sens = 100.00%, Spec = 68.75%, BA = 84.38%. Thus, bag filtering
made it possible to improve the quality of the algorithm.

Table 1
Quality metrics for the algorithms

Values of Algorithm name
metrics FSSF Bartmip k∧ kmin Gmil-2 Emdd DD
Sens, % 100.00 75.60 83.10 85.60 75.00 64.00 87.50
Spec, % 71.25 76.50 78.20 78.50 75.00 63.50 33.20
BA, % 85.62 76.05 80.65 82.05 75.00 63.75 60.35

Table 2 shows the quality metrics of the FSSF algorithm without filtering and with
filtering for all distances used in constructing the decision function separately (without
forming a collective solution). The presented results show that with the specified
strategy for removing positive outlier bags, the specificity of the method increases.
Comparing the obtained metric values with the results in Table 1, we can conclude that
when using an ensemble solution, the classification quality for the proposed method
improves.
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Table 2
Quality metrics for FSSF

R (1) Metric values, without filtering Metrics values, filtered
Sens, % Spec, % BA,% Sens, % Spec, % BA, %

Rmin 90.00 62.50 76.25 90.00 71.25 80.63
Rmc 95.00 66.87 80.94 95.00 68.13 81.56
RW 95.00 60.00 77.50 80.00 65.63 72.81

5 Conclusion

The paper proposes a method for multiple instance weakly supervised learning using
the selection of an informative feature space, filtering of training sample bags, and
voting on a set of decision functions. The experimental results on protein identification
dataset using the developed method are presented. The results of comparison with a
number of well-known algorithms have confirmed the high efficiency of the developed
algorithm. The method allows choosing the most informative sets of features, which
is important for improving the quality and interpretability of the solutions, as well as
self-correcting of the training sample, which makes it possible to reduce the impact
of various types of errors. Further research is planned to improve the reliability and
stability of weakly supervised recognition.
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1 Introduction

Quality of life and the well-being of individuals and households attracts much attention
of decision makers, media and the public in general. Statistical offices have experienced
a growing demand for official statistics to shed light on the quality of life and the state
of society “beyond GDP”. The concept of well-being refers to various aspects of life
that are crucial for meeting human needs, the ability to pursue one’s goals, and feeling
satisfied with life. While there has been much research on quality of life, there exists
no uniform definition or set of indicators.

This multidimensional concept encompasses economic, social and environmental
dimensions. However, tools for assessing real quality of life differ across countries, and
national frameworks remain imperfect: total and regional composite indicators are not
used, special subsystems of indicators (income, employment, housing, education and
others) are not distinguished, and the possibilities of existing information support are
not fully utilized. The directions for developing quality of life statistics are associated
with calculating composite estimates and improving the methodology of household
surveys.

The paper consists of the following parts:

1. Main indicators and trends

2. Composite indicators

3. Household sample survey (expenses and incomes)

4. Household survey to study employment problems
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2 Main Indicators and Trends

In 2010–2024 real money incomes, wages, housing, HDI increased, the number of
employed, the number of registered unemployed decreased. Since 2014 indicators of
real unemployed are calculated, these parameters also decreased: 5% in 2015, 3.0% in
2024.

Table 1
Main quality of life indicators

Indicators 2010 2015 2019 2020 2021 2022 2023 2024

Life expectancy at
birth, years

70.4 73.9 74.5 72.3 72.2 74.4 74.4 —

Total increase of
population, h

-1.9 1.8 -2 -6.8 -10.1 -5.9 -4.9 -5.1

Real money incomes, %
prev. year

114.8 94.3 106.1 104.7 102.1 96.4 106.4 109.7

Real wages, % previous
year

115.0 97.7 106.1 104.7 102.1 96.4 111.6 113.0

Expenses on food, %
total

36.8 39.1 35.7 36.8 37.6 36.8 35.4 —

Housing, m2 per inhab. 24.6 26.5 27.8 28.9 28.9 29.4 29.9 —

Recorded crimes, per
10000 pop.

1458 1022 938 1018 943 960 930 802

Reg. unemployment, %
labor force

0.7 1.0 0.2 0.2 0.1 0.1 0.1 0.1

Real unemployment, %
labor force

— 5.2 4.2 4.0 3.9 3.6 3.5 3.0

GDP (PPP$) per capita — 18096 22302 24872 27611 28426 30882 —

HDI 0.803 0.825 0.826 0.815 0.815 0.824 0.824 —

Source: [1].
The following quality of life trends in Belarus are observed:

• the real incomes and wages have been increasing except for the crisis 2015 and
2022 years but high share of food conception (35-37%) indicates the relatively
low living standards;

• main social indicators have improved;

• the population, total labor force, total employed has been decreasing consistently,
in 2024 total population decrease was 0.5%; number of employed has reduced by
0.8%;

• real unemployment rate is little variated accordingly in limits 3-4%;

• it is no composite indicator, calculated for a country and by regions;
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• main statistical problems are partial and discordant set of information, data,
especially connected to the health, government governance, environment,
satisfaction;

One of important directions of the detail quality of life estimation is development
of the sample surveys system. Nowadays it includes two surveys:

1. living standards households survey,

2. households survey to study the problem of unemployment.

3 Composite Indicators

Multidimensional concept covers all aspects of life, including composite index of
subjective and objective fields such as living standards, incomes, work, employment,
housing, health, education, living environment, life satisfaction. Many indicators reflect
the quality of life; differences between countries are substantial (Table 2).

Table 2
Composite indicators for quality of life (QL)

Evaluation index,
contributors

Dimension, indicator

Human Development index
(HDI), Sen, 1993

3 dimensions: health, education, economic
development

Basic Quality of life index,
Diener, 1995

7 indicators to evaluate the quality of life in 77
countries

Index of social progress (ISP),
Estes, 1998

41 indicators (health, education, services)

Well-being index (WBI), Mc
Gillioray, 2005

As HDI except for the per capita income indicator

Social Development index
(SDI), Ray, 2008

10 indicators: life expectancy, number of phone calls,
power consumption

Quality of life index (QoLI),
Qing, Rong, 2023

38 indicators: personal life, public life, living
environment, life satisfaction

Better life index (BLI),
OECD 2011, 2017, 2025

Recommended dimensions (10): subjective well-being,
material living conditions, work, housing, health,
knowledge and skills, physical safety, social
connections, civil engagement, environmental
conditions.

Source: [2–5].
From a modern prospective, composite quality of life indicator (QLI) for Belarus

taking into account existing information possibilities is proposed as the next model:

QLI =
√
QLIo ·QLIc (1)
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QLIo = 4
√
Iec · Id · Ic · Ie, (2)

where QLIo is quality of actual life index (objective estimate), QLIc is life satisfaction
index (subjective estimate), Iec is economical index (GDP, retail turnover per capita,
wages), Id is demographical index (increase of the population, share of population aged
65+), Ic is social index (housing, crime rate, employment), Ie is ecological index (air
polluting emissions, water discharge).

The value of each index is taken as normalized by minimax method. According to
the evaluation model, QLIo is calculated for Belarus in total and by regions. Leaders are
Minsk, Minsk and Grodno regions (0.45-0.58), outsider is Mogilev region (0.120-0.150).

The main information resource for calculation of number of indicators, formation
of subjective estimates is only households surveys. There are official statistics surveys
or specialized mini-surveys, online-surveys.

4 Households Living Standards Survey

Households Sample Survey is conducted since January, 1995. Its main purpose is to
get the information about the welfare of all population and particular demographic
groups, detailed income and expenses data.

Main components of the survey are: baseline interview, four-quarterly interviews,
four two-week interviews, which HH receives every quarter. More than 10 000 variables
are investigated in the survey.

Survey object is households. Survey is carried out in all country regions and
separately in Minsk. Annually the survey covers 0.2% or 6000 HH.

In this survey three-stage probabilistic territorial sampling is used:

1. At the first step sampling units are cities and rural soviets (village councils)

2. At the second step – local-polling districts in city and data of the soviet account
in rural soviets (village councils)

3. At the third – HH

The procedure of administrative and territorial units selection repeats 1 time in 10
years, selection of polling districts and HH is carried out annually.

The methodology of weighing and extrapolation data on a general population is
based on assignment of each finite unit (HH) the corresponding weight (Bi):

Bi =
1

p1 · p2 · p3

, (3)

where p1, . . . , p3 are respectively the probabilities of selecting each: city (village
council); polling district in cities, village council; household within enumeration
district.

Base HH weights are corrected on uninhabited apartments and non-responses by
using mathematical methods.
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The sample program assumes filling in some questionnaires (living conditions,
personal subsidiary plots, education, health, employment), daily and quarterly
questionnaires [6; 7]: expenses on food and nonfood, payment of services etc.

5 Households Survey to Study the Problems of

Employment

A special labor force survey has been carried out by the National Statistical Committee
of the Republic of Belarus on a regular basis since 2012. The main objectives of the
survey: to study the state and dynamics of demand - supply of labor, the formation
of official statistical information on the number of employed, unemployed, causes and
duration of unemployment, to obtain empirical statistics on labor force, employed,
unemployed by sex, regions, rural, urban.

The survey is carried out quarterly, in each region and separately in Minsk. Taking
into account possible non-responses, the selection share is 0.9%, or 37.2 thousand
households. Sampling frame is based on the Census (2009, 2019) and includes: set
of cities in each region, census enumeration districts in each selected city, villages in
each selected village council, the household totality in each census enumeration district
and village. The territorial probabilistic three-stage sampling is used. At the first stage,
the selection units are cities, urban-type settlements, village councils, at the second -
the enumeration areas, and rural settlements, at the third - households.

The methodology for statistical weighting and dissemination of data to the general
population is based on assigning an appropriate weight to each holding.

Individual weights of respondents are calculated based on the results of iterative
weighing: weights are calculated separately by gender, urban and rural areas;
adjustments are made to the initial coefficients, first in the context of urban and rural
areas, then - for five-year age groups.

Final individual weight for the respondent in each 5-year group:

Ki = BB · k1, (4)

where BB =
Sj
sj

; k1 = St
Sε

; Sj, sj – population size in the j-th age and sex group based

on the results of Census and survey; St – population size in the t-th group by urban
(rural), sex (on the Census data); Sε – extrapolated population size in the t-th group
(by Bv).

To increase the representativeness of the data (by region, urban and rural areas, age
and gender groups), it is possible to increase the number of iterations, use alternative
weighing schemes [8; 9].

6 Concluding Remarks

The first results of composite indicators (QLI) calculations, experience of conducting
households surveys in Belarus has shown:
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• To form subjective estimates and improve the representativeness by demographic
groups can be extended questionnaires of official statistics surveys (individual,
public life satisfaction) or used specialized face-to-face, online surveys;

• Survey problems are mainly associated with the presence of non-responses, the
need of localization of sampling, regional subsamples construction; the need to
use different weighing and extrapolation schemes;

• The most optimal model for selecting households is a three-stage stratified
sampling; for specialized surveys is a quasirandom samples;

• The use of different weighting methods will provide very reliable information over
large number of variables.
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based on mixed frequency data, designed for short-term forecasting and
science-casting of real GDP growth rates in the Republic of Belarus based
on economic indicators available with a monthly frequency of observation. A
comparative analysis of the accuracy of short-term forecasts and nowcasts is
carried out based on the constructed models based on mixed and aggregated
data.

Keywords: mixed frequency data; short term forecasting and nowcasting;
MF-VAR model; real GDP growth rates forecasting; macroeconomic indicators.

1 The relevance of the problem and the purpose of

the study

The first official estimate of the real gross domestic product (GDP) is formed by the
National Statistical Committee of the Republic of Belarus (NSC RB) on a quarterly
frequency on the 90th day after the reporting period, i.e. with a delay of one quarter.
At the same time, statistics on industry indicators and price indices are generated on a
monthly basis and published in the month following the reporting month – two months
before the end of the current quarter. In this regard, the task of forecasting real GDP
for the past, current and near future quarters based on available monthly data becomes
urgent. This task of assessing the current state of the modeled process is known as
the nowcasting task [1]. Obviously, the accuracy of forecasts for subsequent periods
depends on the assessment of the current state.

The purpose of the study is to build vector autoregression models based on mixed
data (Mixed Frequency Vector Autoregression – MF-VAR) [2], designed for short-term
forecasting one quarter ahead and tracking real GDP growth rates based on economic
indicators available with a monthly frequency of observation; a comparative analysis
of the accuracy of forecasts of the constructed models for mixed and aggregated data.
The problem under consideration has been solved in various countries, including the
Russian Federation [4]. This task has not been considered before for the Belarusian
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economy.

2 Description of the models

When building the models, the following tasks were solved: 1) pre-processing of
time series (seasonal adjustment, logarithmization, reduction to a stationary form by
reducing to growth rates); 2) selection of optimal model specifications; 3) evaluation,
analysis of statistical adequacy and assessment of forecast accuracy.

The following time series of economic indicators provided by the NSC of the
Republic of Belarus were used to conduct the research:

• PC LRGDP – growth rates in logarithms of the real quarterly GDP of Belarus
by sources of income use in average annual prices in 2018, million rubles, YoY
(in %);

• PC LRPP M SA – the growth rate in logarithms of industrial production in
average annual prices in 2018, MoM (in %);

• PC LRRET M SA – the growth rate in logarithms of retail turnover in average
annual prices in 1995, MoM (in %);

• PC LRINV M SA – growth rates in logarithms of the volume of investments in
fixed assets at average annual prices in 2018, MoM (in %);

• PC LRAGRO M SA – the growth rate in logarithms of the volume of agriculture
in the average annual prices of 2018, MoM (in %);

• PC LBI BLD M SA – the growth rate in logarithms of the basic index of the
volume of construction and installation works (January 2018 = 1), MoM (in %);

• PC LBI RRDH M SA – the growth rate in logarithms of the basic index of the
volume of monetary incomes of the population (January 2018 = 1), MoM (in %);

• CESI M SA is a composite economic sentiment index [5].

The SA symbols indicate a seasonally adjusted time series using the TRA-MO/SEATS
method.

A constant and an impulse dummy variable dum2022q2 were also added to the
model to account for the structural change in the second quarter of 2022. The
MF-VAR(p) model, estimated using the least squares method, consists of 22 equations
(one for the target quarterly indicator and three equations for each monthly indicator
corresponding to 1, 2 and 3 months in the block). Thus, the number of estimated
parameters is 22(2 + 22p), where p corresponds to the number of lags for the variables.
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3 Comparative analysis of forecast accuracy

The accuracy of one-step forecasts for one quarter ahead for models based on mixed
data (MF-VAR) and aggregated data (VAR) was assessed using retrospective forecasts
during the model evaluation period, as well as on the basis of non-selective one-step
forecasts using the ”expanding window” algorithm. According to this algorithm,
forecasts for the period from the third quarter of 2022 to the fourth quarter of 2024
were made with sequential progress for one quarter. Thus, 10 quarterly forecasts
were obtained for the predicted variables, on the basis of which the following forecast
accuracy characteristics were calculated: RMSE (Root Mean Squared Error) and MAE
(Mean Absolute Error). The values of these characteristics for the target are shown in
Table 1 for the MF-VAR and VAR models.

All the models presented in Table 1 have an optimal specification in terms of metrics.
The VAR and MF-VAR models include all the described macroeconomic indicators,
regardless of their significance. The VAR∗ model includes only the PC LRPP M SA
variable as significant and best in terms of metrics; the MF-VAR∗ model includes the
PC LRPP M SA, PC LRRET M SA, and CESI M SA variables as best in terms of
metrics.

Table 1
Accuracy Indicators for Forecasting Annual GDP Growth Rates of RB

Model RMSE MAE
Forecasting Period 2022Q3 – 2024Q4 (Retrospective Forecasts)

VAR(5) 1.542778 1.192851
VAR*(5) 3.095332 2.563846

MF-VAR(2) 1.335281 1.064489
MF-VAR*(5) 0.5603* 0.3970*

Forecasting Period 2022Q3 – 2024Q4 (Expanding Window with a Step of 1)
VAR(1) 2.495408 1.877692
VAR*(2) 2.112804 1.424611

MFVAR(1) 3.106951 2.375936
MFVAR*(2) 1.8467* 1.2564*

Based on the results of a comparative analysis of forecast accuracy metrics (Table
1), the MF-VAR* model has the best forecast accuracy indicators.

In Figure 1 we see a graph of one-step out-of-sample forecasts using the expanding
window algorithm.

4 Conclusion

As a result of the study, it was found that the best combination of variables
for predicting GDP growth in the Republic of Belarus in terms of metrics is
PC LRPP M SA, PC LRRET M SA, CESI M SA, with the number of lags p = 2.
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Fig. 1. Forecast of non-selective values of real GDP growth in Belarus based on the MFVAR
model for the best combination of variables

The result also corresponds to the economic meaning of the constructed model. Indeed,
industrial production (PC LRPP M SA) and retail trade (PC LRRET M SA) are
approximations of those components that account for the largest share of the total
GDP of Belarus in terms of added value; and the CESI indicator can be interpreted as
the average expected value of GDP over a certain period.

Based on the results obtained, the following conclusions can be drawn:

1) the MF-VAR model based on mixed frequency data, with the best selection of
high-frequency variables, is able to make more accurate forecasts compared to
the VAR model based on aggregated data in the mode of short-term forecasting
and nowcasting;

2) nn the short term, the real GDP of the Belarusian economy is most influenced
by such macroeconomic indicators as the volume of industrial production, the
volume of retail trade and the CESI economic sentiment index.
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This study investigates the relationship between ESG performance and
innovative activity in Russian companies. Using data from the RAEX ranking
and the Rospatent database (2020–2024), an empirical analysis is conducted via
a Bayesian HURDLE model. The results indicate that companies with higher
ESG ratings demonstrate greater innovative activity, reflected in the number of
registered patents. The analysis also reveals the influence of control variables,
such as company size and industry affiliation, on this relationship.
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1 Introduction

In today’s economy, sustainable development and innovation are key drivers of
corporate competitiveness. The principles of ESG (environmental, social and
governance factors) are increasingly integrated into business strategies, promoting
long-term sustainability and financial profitability. Although innovation is not directly
included in ESG metrics, there is a strong link between ESG transformation and
corporate innovation [1–3]. The transformation of ESG encourages the adoption of
new technologies to improve environmental efficiency, social conditions, and governance
practices. This encourages technological advances such as the reduction of carbon
emissions and the use of recycled materials. ESG-focused companies often increase
R&D investments, driving the creation of new products and services that meet market
and social demands. Leaders in ESG ratings show high inventive activity, exemplified
by oil sector companies actively patenting sustainable technologies. High-ESG-rated
firms tend to achieve better returns on R&D investments and long-term stock value
growth, enabling further reinvestment in innovation [3; 4]. Moreover, ESG practices
indirectly boost innovation by enhancing workforce development and improving social
welfare and working conditions, which raise employee skills and motivation. This
study aims to analyze the relationship between ESG performance and innovation
in companies, identifying groups for whom integrating sustainability metrics into
innovation assessment is particularly critical. The RAEX ranking will be used to
assess the impact of ESG factors on corporate innovation activity [5–7].
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2 Data and methods

To analyze the relationship between ESG performance and innovation activity, data
from the RAEX ranking (2020–2024) were aggregated into three groups based on
the RAEX Europe 2023 ranking: A (A-AAA), B (B-BBB), and C (C-CCC). The
top 10 percent companies were assigned to group A, the next 30 percent to group
B, and the remaining 60 percent to group C. The dataset includes 160 companies
for 2023, supplemented with patent and software data from the Rospatent database
(2020–2024). Missing data were marked as Not Rated (NR). Industries with the highest
data representation include Chemistry, Finance, Metallurgy and Mining, and Oil and
Gas Extraction. Initially, most innovative firms belonged to group B, but after 2023,
group A became dominant. The study hypothesizes that higher ESG ratings correlate
with greater innovation, measured by RAEX ESG scores and annual patent counts.
Control variables include company size (log of total assets), business model (industry
sector), and company age. ESG ratings, size, and industry data are taken at the start
of each year, with patent data recorded at year-end to ensure causality. A Bayesian
HURDLE model was used to capture the two-stage patenting process: the decision to
patent (binary) and the number of patents filed (zero-truncated Poisson distribution).
Bayesian estimation, suitable for limited panel data, incorporates prior knowledge
and provides robust posterior inferences [8–11]. Thus, the total number of patents
of company i in year t depends on two factors: the probability that company i will
engage in patenting activity in year t, denoted as (1-P(i,t)); the parameter P(i,t), which
defines the distribution of the number of patents for company i in year t, conditional
on the decision to engage in patenting activity. The formulas of the model are available
in Subsections 4.1, 4.2.

3 Results

The model was estimated using the Stan programming language, employing the
Hamiltonian Monte Carlo (HMC) algorithm with the No-U-Turn Sampler (NUTS).
The estimation involved 5,000 iterations following 4,000 warm-up iterations, which
were excluded from the final results but essential for model calibration and posterior
distribution convergence. Data preprocessing and postprocessing were conducted in
R, integrated with Stan via the cmdstanr package. Results are presented as posterior
distributions of parameters and contrasts, where contrasts represent differences between
rating groups. Posterior distributions provide estimates of both central tendencies and
uncertainty. The analysis reveals that companies in rating group A (highest ESG
rating) tend to have a higher number of patents compared to groups B and C, whose
patent distributions appear visually similar. Notably, companies without an ESG
rating exhibit significantly fewer patents, and since most unrated companies later fall
into group C, the patent count for group C may be somewhat overestimated. Posterior
probabilities of engaging in patenting activity (1 - P) indicate similar innovation
tendencies across all groups, with slightly higher probabilities for groups A and B.
However, smaller sample sizes in groups A and B result in greater variability and less
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statistical significance compared to groups C and unrated companies. A clear trend
shows increasing median expected patent counts with higher ESG ratings, with group
A leading, followed by groups B, C, and unrated companies. Uncertainty is higher
for group A due to its smaller sample size (13 companies). Effect estimation involved
analyzing contrasts between groups for the parameter P, representing the expected
number of patents conditional on patenting activity. The posterior distribution of these
contrasts highlights significant differences in innovation intensity across ESG rating
groups. The contrast analysis reveals clear differences in patent counts across ESG
rating groups. Unrated companies (NR) are expected to have the lowest patent counts,
supported by positive differences between groups A, B, and NR. Group B patents less
than group C, while group A patents more than group C. Comparing groups A and B
shows that group A significantly outperforms group B in patent activity. Thus, among
patenting companies, those with an A rating exhibit the highest innovation output.
Economically, these results suggest that companies with strong ESG practices recognize
the value of innovation and consistently engage in it. Companies with below-average
ratings see potential for improvement both in ESG performance and innovation as part
of their rating process. Analysis of the probability of engaging in patent registration
indicates: no statistically significant difference between unrated companies and other
groups. A significant difference between groups C and B, with group B more likely
to patent than group C. While patenting activity levels are similar for companies that
do patent, group C companies may refrain from patenting when patent counts are
low. Thus, group B companies are more likely to patent, but group C companies
patent more intensively once active. Group A companies are more likely to engage
in patenting than others, though evidence is insufficient to conclusively quantify this
difference. The contrasts visualizations are available in Subsection 4.3.

4 Model and visualization

4.1 Probability Function of the Total Number of Patents for
Company i in Year t

p (yi,t|λi,t, θi,t) =

θi,t, yi,t = 0,
(1−θi,t)

(1−e−λi,t)
· (λi,t)

yi,te−λi,t

yi,t!
, yi,t > 0.

(1)

4.2 Poisson Regression Model

λi,t = eµi,t , µi,t = Xi,tβi,t, βi,t = β0 + bi + bt, bi ∼ N
(
0,Σi,

)
, bt ∼ N

(
0,Σt

)
.

Covariance matrices:

Σt =

 τ 2
i1

· · · ρiτi1τiK
...

. . .
...

ρiτiKτi1 · · · τ 2
iK

 , Σi =

 τ 2
t1

· · · ρtτt1τtK
...

. . .
...

ρtτtKτt1 · · · τ 2
tK

 . (2)
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Notation:

• yi,t — number of patents of company i in year t

• λi,t — Poisson distribution parameter for company i in year t

• µi,t — logarithm of the Poisson distribution parameter for company i in year t
(used for linear modeling since λi,t > 0)

• Xi,t — 1×K vector containing values of explanatory variables for company i in
year t, where K is the number of explanatory variables

• βi,t — K × 1 vector containing linear regression coefficients µi,t for explanatory
variables of company i in year t, with coefficients varying by observation groups

• β0 — K × 1 vector containing mean (population) linear regression coefficients

• bi — I × 1 vector, where I is the total number of unique firms, containing
deviations of regression coefficients from means depending on the firm
(firm-specific random effects)

• bt — T × 1 vector, where T is the total number of unique years, containing
deviations of regression coefficients from means depending on the year
(year-specific random effects)

4.3 Contrasts visualization

Fig. 1. Contrasts in patent counts among patenting companies by ESG group

5 Conclusion

The analysis of the relationship between ESG performance and corporate innovation,
based on RAEX rankings and patent activity, yields several key findings. Companies
with the highest ESG ratings (group A) exhibit greater patent activity compared to
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Fig. 2. Contrasts in the proportion of patenting companies by ESG group

those with lower ratings (groups B and C), indicating that integrating ESG principles
fosters an innovative environment and drives technology development. Interestingly,
companies in group B are more likely to engage in patenting overall than those in group
C. However, when companies in group C decide to patent, they tend to register a higher
number of patents, suggesting that firms with lower ESG ratings may view innovation
as a tool to improve their performance and competitiveness. The results confirm
that ESG factors can act as innovation drivers by encouraging the development and
adoption of technologies that enhance environmental efficiency, social conditions, and
corporate governance. Industry affiliation and company size also influence both ESG
performance and innovation, highlighting the importance of considering these factors in
related analyses. Future research could explore the impact of specific ESG components
on various types of innovation and uncover the mechanisms through which ESG
practices stimulate innovative activity. Overall, the findings support the hypothesis of
a positive link between ESG effectiveness and innovation, suggesting that embedding
ESG principles into corporate strategy can enhance long-term competitiveness and
sustainability.
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The paper discusses conditional average treatment effect estimation methods
under nonlinear confounding. We use Monte-Carlo simulation with data
generating processes based on convolutional neural networks with special
adjustments, which allow comparison of counterfactual distributions. The
generated data is subsequently analyzed through discretization and estimation
of conditional distributions, as well as calculation of effects using double machine
learning methods. We show that in this setup both discretized and double
machine learning-based estimation perform poorly, showing very low correlation
with true conditional effects.
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1 Introduction

Modern methods for analyzing observational data enable the estimation of
heterogeneous treatment effects at any point in the covariate space, known as
Conditional Average Treatment Effects (CATE), under the assumption of a known
causal graph structure. However, most existing Monte Carlo-based evaluations of
CATE focus on different predictive techniques, while relying on Gaussian synthetic
data [1–3], which implicitly assume linear conditional mean relationships. These
simplifying assumptions limit the scope of inquiry because many contemporary
methods focus instead on flexible nonparametric or semiparametric estimators capable
of accommodating more general forms of functional dependence. In this study,
we explore data-generation mechanisms characterized by significant nonlinearities,
following the structural framework outlined in Figure 1.

Fig. 1. Directed acyclic graph model used in simulations

The treatment variable D is binary, so its conditional average treatment effect on
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the dependent variable Y is defined as

δ(X) = E[Y (X,D = 1)− Y (X,D = 0) | X].

At thirst, we estimate δ(X) by discretizing values of all variables and estimating
conditional distributions of Y (this method is thereby referred as causal search). Next
we estimate δ(X) by double machine learning (DML) methods [4], where the predictive
models are selected through cross-validation, as discussed in [5].

2 The methods, conditions and results

Algorithm 1. Data generation with high nonlinearity and confounding.

• Gaussian n × k i.i.d. feature matrix is processed through a convolutional
neural network with fixed depth and width parameters. Weights are initialized
randomly from centered distribution1 and applied to transform input features
into intermediate representation. At the output layer, transformation according
to Z → 1

1+e−ZTw
is applied to convert the outputs Z into probabilities p, where

each element represents the probability for corresponding Bernoulli variable.

• Using the generated probability vector p, we sample a binary vector D according
to independent Bernoulli distributions parameterized by elements of p.

• Constructing outcome variable Y through another CNN architecture with input
variables Z,D. We create two additional versions of the input feature set:
one augmented with D = 1 and another with D = 0, which produce the
counterfactuals, denoted as Y (X, 1) and Y (X, 0).

Algorithm 2. Causal search estimation.

• Discretize all continuous variables based on their empirical quantiles divided into
bins.

• Estimate conditional distribution of Y given observed relationships between X
and D using the known dependence structure, 2.

• Estimate conditional regression functions E(Y | X,D = 1) and E(Y | X,D =
1) and evaluate them at observations, brought to the closest points on the
discretization grid.

Algorithm 3. Double machine learning-based CATE estimation

• Estimate DML in a partially-linear model setup, choosing a predictor model with
the smallest mean-squared prediction error in a cross-validation scheme.

• Regress the potential outcome differences on a library of tensor transformations
of X to obtain CATE

1To avoid convergence due to CLT, we use Cauchy and t(2) distributions.
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Fig. 2. Counterfactual distributions of the dependent variable Y

• Evaluate CATE at the observation points

• Obtain estimates of L2 distance between three sets of conditional expectation
functions by Monte-Carlo.

Table 1 shows the nonlinearity of the counfounders: the addition of linear controls
only worsen ATE estimate (the true value being 70.0), a 5th degree polinomial of the
control variables significantly improves the result.

Table 1
OLS estimation of the effect of D on Y with different controls

(1) (2) (3)
no controls linear polynomial deg(5)

d 11.422 −20.555 53.224∗∗∗

(19.645) (16.335) (8.562)
x1 61.436∗∗∗ . . .

(3.115)
x2 −20.779∗∗∗ . . .

(3.133)
x3 200.987∗∗∗ . . .

(3.072)

Observations 10,000 10,000 10,000
R2 0.00003 0.320 0.822

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results of all simulations show that the conditional average effects estimators
perform poorly, achieving at best 0.2 correlation with true values for the discretized
models with large number of discretization bins. On the other hand, both DML and
causal search provide good estimates of averate treatment effects, usually within 10%
deviation from the true value.
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Consider a deterministic dynamical system 〈M, F, µ, T 〉, where µ is T−
invariant probability measure. The well-known dynamical Borel-Cantelli lemma
states that for certain sequences of measurable subsets An ⊂ M and µ− almost
every point x the inclusion Tnx ∈ An holds for infinitely many values n. In the
present paper, we study the stationary Markov process X := {Xn, n ∈ N} defined
as

Xn := Xn(ρ, ξ) = ρXn−1 + ξn, n ∈ Z,

where ρ is a real constant, ξ := {ξn, n ∈ Z} is a sequence of independent,
identically distributed (i.i.d.) random variables and ξ0 ∼ Laplace(0, b). Let
〈RZ, B, ν〉 be the probability space, where ν is a probability measure associated
by stochastic process X. Consider the shift map τ on RZ. We give sufficient
conditions on sequences of cylinders, that ensure the dynamical Borel-Cantelli
lemma for the dynamical system 〈RZ, B, ν, τ〉. It also holds for AR(1) processes
generated by the exponential, uniform, and Laplace distributions.

Keywords: Dynamical Borel-Cantelli lemma; autoregressive process;
Gaussian distribution; Markov process.

1 Introduction

The classical Borel-Cantelli lemma plays an important role in probability theory and
its applications. The modern dynamical systems theory uses a special version of
the Borel-Cantelli lemma (see for instance [1]). Let 〈M, F, µ, T 〉 be a dynamical
system with T− invariant probability measure µ. The classical Poincare recurrence
theorem states that for any fixed subset A ∈ F with µ(A) > 0 the equality
µ({x ∈ A | T n(x) ∈ A for infinitely many n ∈ N}) = µ(A) holds. We consider the
sequence of nontrivial measurable subsets An and can still ask for the µ−measure of
the limsup set: {x ∈ M | T n(x) ∈ An for infinitely many n ∈ N} = limsupT−nAn. In
the case Σµ(T−nAn) = Σµ(An) <∞, the convergence case of the Borel-Cantelli lemma
implies that the µ−measure of the limsup set is zero. If Σµ(An) =∞, and T−nAn are
independent, then for µ− measure of the limsup set is one. The last assertion has a
limited value for deterministic dynamical systems, since one rarely deals with purely
independent sets. In the case, if Σµ(An) = ∞ and the events T−nAn are dependent,
the situation is more complicated and more interesting. A definition, found in [2],
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applies to this situation. (see [2]). A sequence of measurable sets An n ∈ N, such that

Σµ(T−nAn) = Σµ(An) =∞, (1)

is called a Borel-Cantelli (BC) sequence for T if

µ(lim supT−nAn) = µ(M).

The divergence case of the Borel-Cantelli lemma is not helpful for finding BC
sequences since this case of the lemma requires independent sets. To obtain a BC
sequence, we need to impose some restrictions. If, for a dynamical system, all sequences
of subsets An that satisfy (1) and certain additional conditions are BC, we obtain
what is called a Dynamical Borel-Cantelli Lemma (DBCL). The first example
of such a lemma, in which only sequences of balls centered at a fixed point and with
weakly monotonically decreasing radii are allowed, was proved by J. Kurzweil [3]. For
a dynamical system with mixing property, the abundance of BC sequences can be
interpreted as an aspect of strong chaos and stochastic behavior of the system. It is
proved (see e.g. [2; 6; 7]) that for a wide class of hyperbolic or fast mixing systems,
various sequences of sets have the BC property. The sets that are to be considered
in this kind of problem are usually decreasing sequences of balls with the same center
(see [3]) or cylinders. In [2] Chernov proved the dynamical BC lemma for Gibbs
measures. In [6] Kim and Galatolo established that the Borel-Cantelli property and
the waiting time problem are in general strictly connected. The main goal of this
paper is to prove the dynamical BC for autoregressive AR(1) processes. Next, we
introduce several important definitions. Let 〈M, F, µ, T 〉 be a dynamical system with
T− invariant probability measure µ. Denote by χn(x) the indicator function of the set
Bn := T−nAn. For every N > 0 we define the following two sums:

SN(x) :=
N∑
n=1

χn(x), EN :=
N∑
n=1

µ(An).

Definition 1. A sequence {An ⊂M, n ∈ N} is said to be a strongly Borel-Cantelli
(sBC) sequence if for µ-almost every x ∈M we have

lim
N→∞

SN(x)

EN
= 1.

We define the quantities Rmn which characterizes the dependence of two events Bm

and Bn :

Rmn := µ(Bm ∩Bn)− µ(Bm)µ(Bn) = µ(T−mAm ∩ T−nAn)− µ(Am)µ(An).

A sufficient condition for a sequence {An} to be an sBC sequence, in terms of Rmn,
was first found by W. Schmidt, and the proof was later provided by Sprindzuk [8] in
the context of Diophantine approximations. This condition was recently adapted to
dynamical systems by D. Kleinbock and G. Margulis [4].

Assume that We suppose that the number Rmn satisfies the following condition:
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N∑
n=M

N∑
m=M

|Rmn| ≤ CEN ,

for some constant C > 0 and for all N > M > 1. The last condition is called
(SP)-condition.

Theorem 1 ( [8]). If the sequence {An} satisfies (SP), then it is an sBC sequence;
moreover, for almost every x ∈ X one has

SN(x)− EN√
EN

= O
(√

logEN

)
.

2 Main results

Let L = [m, k] be a closed lattice interval, i.e. [m, k] ⊂ Z1.We call m and k the left
and right endpoints oof aa finite latticeintervalL ⊂ Z, respectively, and (m + k)/2
the center of L. We say that two lattice intervals [m1, k1] and [m2, k2] are D-nested
for D ≥ 0 if either [m1, k1] ⊂ [m2−D, k2 +D] or [m2, k2] ⊂ [m1−D, k1 +D]. If the left
endpoints of all lattice intervals Ln, n ∈ N lies in the interval [0, D], then the intervals
Ln are called D-aligned.

Let {Xn, n ∈ Z} be a sequence of real-valued random variables on the same
probability space (Ω,F,P). Let Fn be the smallest σ− algebra such that Xn is
measurable. For n ≤ m, we denote by Fmn the smallest σ− algebra with respect to
which Xn, ..., Xm are jointly measurable.

The random process {Xn, n ∈ Z} is called first order autoregressive (AR(1))
process with innovation random process {ξn, n ∈ Z} and autoregressive parameter ρ iff

Xn = ρXn−1 + ξn, n ∈ Z.

Assume that |ρ| < 1 and {ξn, n ∈ Z} is a sequence of independent identically distributed
(i.i.d.) random variables. Let ξ0 ∼ Laplace(0, b). The strong mixing property for AR(1)
processes were studied by D. Andrews in [5]. The AR(1) process is strong stationary

with invariant measure is π(x) =

√
1−ρ2

2b
e−
√

1−ρ2
b
|x|, and the transition probability

density is p(x, y) = 1
2b
e−
|y−ρx|
b .

Let
∑

be a symbolic space defined as∑
:= (x : x = (...xi−1, xi, xi+1, ...), xi ∈ R, i ∈ Z) =: RZ1

.

Let τ :
∑
→
∑

be a shift map defined as τ(xi) = xi+1, i ∈ Z. For every L :=
[m, k] ⊂ Z we define the cylinder as

C[m, k] = {x : x = (...xi−1, xi, xi+1, ...) , xi ∈ [ai, bi], m ≤ i ≤ k} ,

where B(R) is the Borel σ− algebra of subsets R.
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Denote by B(RZ) the minimal σ−algebra containing all possible cylindric subsets.
Denote by ν a Borel probability distribution on measurable space (R, B(R)) produced
by Laplas distribution Laplace(0, b) i.e.

ν(B) :=
1

2b

∫
I

e−
|x|
b dx, for ∀B ∈ B(R).

Consider the measurable space (R, B), where (B) is the σ− algebra of Borel subsets.
We denote Z := {. . . ,−1, 0, 1, . . . }. Let m, k ∈ Z, m ≤ k and Gi ∈ B, m ≤ i ≤ k.
Define a cylinder as

C[m, k] := {x : x = (...xi−1, xi, xi+1, ...) , xi ∈ Gi, m ≤ i ≤ k, } ,

Fix a number γ ∈ (0, 1
2
). We say that C[m, k] is γ−type cylinder if it satisfies the

following conditions:

• Gi ⊂ [−A,A], m ≤ i ≤ k,

• max{sup−∞<a<∞ ν(a+Gi), m ≤ i ≤ k} ≤ 1− γ,

where a+G denotes the set {a+ x, x ∈ G}.
The main result is as follows.

Theorem 2. Let γ ∈ (0, 1) and D ≥ 0. Suppose that the cylinders C[m(n), k(n)],n ≥ 1
defined on lattice intervals [m(n), k(n)] ⊂ Z satisfies the following conditions:

• any two lattice intervals of the system {Ln := [m(n), k(n)], n ≥ 1} are D-nested;

• each cylinder C[m(n), k(n)] is of γ−type. Then the sequence of cylinders
{C[m(n), k(n)], n ≥ 1} satisfies (SP), and hence, if in addition

∑
µ(Cn) =∞, it

is an sBC sequence, and (2) holds.
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Algorithm for calculations of mathematical expectations of nonlinear
functionals from the solution to an linear 2-dimensional equation of Skorohod
with first-order chaos in coefficients and some linear Ito equations is described.
An approach based on the using of multiple Stieltjes integrals for constructing of
approximate formulas is used. Numerical examples illustrating the application of
the obtained formulas are given.

Keywords: stochastic differential equations; Skorohod equation;
mathematical expectations of functionals from solutions; approximate formulas.

1 Introduction

In [1] approximations of mathematical expectations of nonlinear functionals from
random processes of the form, which are complex functionals of the form F (X(·)(Y )),
where X(·) ≡ X is a solution of stochastic differential equation (SDE), are considered.
Approximations are based on the construction of approximate formulas that are exact
for functional polynomials of X. The possibility of constructing formulas with the
specified accuracy was determined by the specific type of moments of process X. In
work [2], in the case when X is a solution of the linear Ito equation, an approach to
constructing an approximate formula that is exact for polynomial of the third degree
of the solution was obtained, independent of the previously considered restrictions.
This approach was then applied in [3–6] in cases when X is a solution of the linear Ito
equations with a leading Poisson process, the Ito-Levy equation and with the functional
X admitting chaotic expansions in multiple integrals. In the paper [8] in the case when
X is the solution of the linear Skorohod equatin, a new approach to constructing
an approximate formula of the third degree of accuracy is proposed, based on the
use of multiple Stieltjes integrals, which in many cases seems simpler. This report is
devoted to application this approach for calculating functionals of the solution of linear
Skorohod SDE with first-order chaos in the coefficients and some of those considered
in [2–5]. Numerical examples are considered that illustrate the application of the
obtained formulas.
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2 Main results

We use in this report the next formulae from [5], exact for functional polynomial

P (X(·)) = F0 +
3∑

k=1

∫
[0,1]k

fk(t1, . . . , tk)X(t1, . . . , tk)dt1 · · · dtk, F0 = const, fk(t1, . . . , tk)

are real functions: E[F (X(·))] ≈

F (0) +
2∑
j=1

AjΛF (cjM1(·)) +
1

2

∫
[0,1]2

M2(u1, u2)d2
u1,u2

∆F (1[0,·](u1) + 1[0,·](u2))

− 1

6

∫
[0,1]3

M3(u1, u2, u3)d3
u1,u2,u3

ΛF
( 3∑
j=1

1[0,·](uj)
)
≡ J(F (X(·))),

where the multiple Stylites integrals are in the right part of the equality, ∆F = 1
2
(F (x)+

F (−x)), ΛF (x) = 1
2
(F (x) − F (−x)); Mk(u1, . . . , uk), k = 1, 2, 3, are moments; Aj, cj

are constants satisfying A1c1 + A2c2 = 1, A1c
3
1 + A2c

3
2 = 0.

We consider the cases when the moments can be evaluated in a form permitting their
calculation with sufficient exactness. So if X is a solution of the stochastic differential
we confine oneself to cases when a solution of the stochastic equation can be found
explicitly. In the report approximate evaluation of the mathematical expectation of
nonlinear functionals from solutions of SDE Ito, driven by Wiener, Poisson, Ito-Levy
processes, and Skorohod SDE are considered.

Let us consider a stochastic differential equation

Xt = X0 +
∫ t

0

(
A0
s +

∫ 1

0
A1
s,rdWr

)
XsδWs, (1)

where X0 = X0(ω) is a random variable with a finite Wiener chaos expansion, Wt is
canonical Wiener process defined on probability space Ω = C0([0, 1]), A0

s and A1
s,r are

commuting square integrable real matrix functions. The integral in right part of (1) is
interpreted in the Skorohod sense. Using the results from [7] (received for more general
case) a solution of (1) can be presented in the form

Xt = exp
{ t∫

0

τs,t(As)dWs−
1

2

t∫
0

τs,t(As)
2ds+

t∫
0

t∫
s

τs,t(DrAs)Ds[τs,t(Ar)]drds
}
τ0,t(X0),

where τs,t(As) = γs,t is a solution of equation γs,t = A0
s +

1∫
0

A1
s,rdWr −

t∫
s

A1
s,rγr,tdr, Ds− the operator of functional derivative and for In(fn) =

n!
1∫
0

sn∫
0

· · ·
s2∫
0

fn(s1, . . . , sn)dWs1 · · · dWsn

τs,t(In(fn)) =
n∑
k=0

(−1)kCk
n

∫
[s,t]k

γs1,τ · · · γsk,τIn−k(fn(s1, . . . , sk, ∗))ds1 . . . dsk,

79



Dt

∑
n≥1

In(fn) =
∑
n≥1

nIn−1(fn(·, t)), t ∈ [0, 1].

We consider in our report a particle case of (1) under d = 2, A =

(
a0(s) 0

0 a0(s)

)
,

A =

(
0 0
Ib 0

)
, a0(s) ∈ L2[0, 1], Ib =

1∫
0

b(τ)dWτ , Xb =

(
x1

0

x2
0

)
, x1

0 ∈ R,

x2
0 = x2

0(ω) =
∫ 1

0
g(r)dWr, gr ∈ L2[0, 1].

Theorem 1. [9] Solution to equation (1) have the form

X1
t = x1

0 exp

{∫ t

0

a0(s)dWs −
1

2

∫ t

0

a2
0(s)ds

}
,

X2
t = x1

0

(∫ t

0

(
Ib −

∫ t

s

a0(r)b(r)dr

)
dWs −

∫ t

0

a0(s)

(
Ib −

∫ t

s

a0(r)b(r)dr

)
ds

)
×

exp

{∫ t

0

a0(s)dWs −
1

2

∫ t

0

a2
0(s)ds

}
+

(∫ t

0

g(r)dWr −
∫ t

0

a0(s)g(s)ds

)
×

exp

{∫ t

0

a0(s)dWs −
1

2

∫ t

0

a2
0(s)ds

}
.

Numerical results are considered under the conditions: a0(s) = s, b(s) = λ, x1
0 = 1,

g(s) = 1, F (X1
t , X

2
t ) = sin(ν(X1

t −X2
t )) (λ = 0.3, ν = 0.3). Approximating expression

have the form: J(F (X1
t , X

2
t )) = − 1√

2
sin(
√

2ν) + 2 sin(ν) + 1
6
M1(t, t, t)(sin(3ν) −

3 sin(2ν + 3 sin(ν))), where M3(t, t, t) = E[(X1
t −X2

t )3]. In Figure 1 we see comparison
between the exact and the approximate values E[F (X1

t , X
2
t )].

Fig. 1. Comparison of the exact (blue) and the approximate (red) values of E{sin(ν(X1
t −

X2
t ))}
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We consider a new robust stochastic algorithm for estimating the symmetry
center of multivariate distributions with convex centrally symmetric density
level surfaces. We investigate its time complexity, convergence rate, and
robustness. A modification of the algorithm that improves estimation accuracy
is also discussed. Comparative numerical experiments with existing multivariate
location parameter estimation algorithms, including Tukey, Oja, and geometric
medians, are presented. Since in the considered class of distributions these
algorithms estimate the symmetry center, the comparison is objective.

Keywords: robust statistics; multivariate median; stochastic
approximation; symmetry center estimation.

1 Introduction

It is known that there is no natural generalization of the univariate median for
multivariate data [2]. This is because in multidimensional space, unlike R1, there is
no natural ordering of points, making direct transfer of univariate concepts impossible.
As a result, various approaches to defining multivariate medians have been proposed
in literature, such as the geometric median [4], Oja median [5], concepts based on data
depth, particularly Tukey median [1], and others [2].

Although there is no single universally accepted generalization of the univariate
median to the multivariate case, there are certain properties it should possess.
For example, for univariate symmetric distributions, the median coincides with the
symmetry center. It is natural to assume that the same should hold in multidimensional
space. In this case, as a generalization of the symmetric distribution concept,
we consider distributions with convex centrally symmetric density level surfaces.
Therefore, the proposed algorithm is based on the consideration that for such
distributions it should estimate the symmetry center.

An important practical limitation of many existing methods is their high
computational complexity [1;5; 7], which significantly narrows their application scope.
To overcome this limitation, the paper proposes a stochastic approach that potentially
provides both robustness and reduced computational costs.
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2 New robust algorithm for multivariate location

parameter estimation

Algorithm 1 estimates the location parameter for distributions whose density level
surfaces f are convex and centrally symmetric, i.e., for any x ∈ Rd:

• f(x + x0) = const is a convex set;

• f(x0 + x) = f(x0 − x), where x0 is the symmetry center.

In this case, the location parameter is defined as the value coinciding with the
distribution’s symmetry center x0 ∈ Rd.

The assumptions imply that Algorithm 1 can be considered as a method for
estimating the symmetry center. The quantity obtained as a result of the algorithmf
will henceforth be called the stochastic median.

Algorithm 1 reduces the multivariate problem to a sequence of univariate
subproblems. This approach allows sequential approximation to the symmetry center
while using simple computations and providing an efficient solution to the location
parameter estimation problem in the multivariate case.

Algorithm 1 for multivariate median estimation

1. Consider a sample x1, . . . ,xn from a distribution with density function f that
satisfies assumptions of the algorithm.

2. Arbitrarily select a point m̂1 as the initial approximation. Set the computation
accuracy ε.

3. Generate a random vector ui uniformly distributed on the unit sphere. Construct
the line

li = {m̂i + λui, λ ∈ R}.

4. Project observations x1, . . . ,xn onto line li, obtaining projection
points yi1, . . . , yin.

5. Find the median m̂i+1 of points yi1, . . . , yin.

6. The algorithm terminates when the condition ‖m̂i−m̂i+1‖ < ε is met. Otherwise,
increment the step counter i by 1 and return to step 3.

To reduce the influence of randomness on the final estimate, consider the following
modification of Algorithm 1. Instead of using the result of the last iteration, perform k
additional iterations and take the average over these k iterations as the final estimate
after reaching the specified accuracy ε. Let the algorithm execute N steps before
reaching the specified accuracy, then

m̂avgk =
1

k

N+k∑
i=N+1

m̂i.
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Averaging the last iterations reduces the estimate’s variance and makes it more
stable.

3 Time complexity analysis

The complexity of k steps of Algorithm 1 for a sample of size n in a space of dimension
d is O(knd).

The time complexity of algorithms for estimating various median generalizations
in a space of dimension d varies significantly across different methods. The Tukey
median approximation (ABCDepth) has a time complexity of O((d+k)n2+n2 log n) [3],
while the exact computation for large n and d is NP -hard [7]. However, randomized
optimization techniques can achieve O(nd−1) complexity for exact Tukey median
computation [6]. The Oja median has a higher complexity of O(kdnd log n) [5], whereas
the geometric and stochastic median estimation algorithms are more efficient, both
with a complexity of O(knd) [4]. This makes the geometric and stochastic methods
preferable for large samples (n� 1) and high-dimensional spaces (d� 1).

4 Comparison with other algorithms

Let us compare the proposed algorithm with popular algorithms for multivariate
location parameter estimation.

Consider median norms of error for different sample sizes in the case of 4-dimensional
standard normal distribution. Simulation results are shown in Figure 1.
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Fig. 1. Median norms of error for samples of size 100, 500, 1000, 5000 and 10000 from normal
distribution (a) without and (b) with outliers. 100 simulations were made.

From Figure 1 (a) we can assume that Algorithm 1 is comparable in accuracy to the
geometric median, which is its complexity competitor, as well as to the Tukey median
for given sample sizes.

84



Now replace 5% of the sample with an outlier point (8, 6, 5, 10)T and run the
algorithms again. Results are shown in Figure 1 (b). We see that the proposed
Algorithm 1 now estimates the location parameter slightly worse, but the accuracy
is still close to the geometric median and Tukey median.

Thus, comparison results show that the new Algorithm 1 may compete with known
algorithms for multivariate location parameter estimation.

5 Conclusion

A new algorithm for robust estimation of center of symmetry in multidimensional
space was implemented. A comparison with common algorithms showed that the
proposed algorithm and its modification provide comparable results and are not inferior
in accuracy. The algorithm is efficient for large samples and high dimensions, making
it a promising alternative to existing methods.
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We consider a model of opinion dynamics in a social network, in which there
are N identical agents and one leader (principal). All agents have the same
reputation, but the leader’s reputation is much higher. The agents’ reputations
are determined by the matrix of agents’ trust in each other. The optimal control
of opinion dynamics in the social network is found to influence the final opinion
of the agents. Numerical simulations for different influence matrices are carried
out.
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1 Introduction

A variety of models exist for opinion dynamics: the process through which opinions
change and spread through a network. They vary in complexity, underlying
assumptions, and structure of opinions generated. This paper considers a model based
on the De Groot model of opinion dynamics [2]. This model is used in negotiation
modeling.

Under the DeGroot opinion dynamics model, agents update their opinions at each
time step to be a weighted average of their own current opinion and the opinions of
everyone with whom they interact. This process is described for a network of N agents
by the following equation

x(t+ 1) = Ax(t), t = 0, 1, ... x(0) = x0, (1)

where
x(t) = (x1(t), ..., xN(t))T ,
xi(t) represents the opinion of agent i at time t,
A = (aij) is a stochastic matrix of trust of agents to each other, i, j = 1, 2, ..., N ,
aij represents the weight that agent i trusts agent j,
xi(0) is agent i’s initial opinion.
Iterating (1) t times, we obtain that the agents’ opinions at time t are calculated

by the formula

x(t) = Atx(0), t = 0, 1, ... (2)
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Since the matrix A is stochastic, then if the ergodicity condition is satisfied, we
obtain

lim
t→∞

Atx(0) = x(∞) = (x, x, ..., x).

The vector x(∞) = (x, x, ..., x) gives consensus in negotiations.
An review of opinion dynamics models is presented in [3]. The conditions for the

existence of consensus for a model with two centers of influence were studied in [1].
Models with opinion dynamics controlled by an external player were considered in [4–7].

In this paper, we consider opinion dynamics model in a social network with N
identical agents and one leader (principal). The agents and the leader differ in the
degree of trust in each other. It is assumed that the agents trust the leader more, and
the leader distributes his/her trust among the agents. We study a model of the opinion
dynamics optimal control in the social network in order to approximate the consensus
closer to a given target value. Numerical modeling is carried out for different values of
players’ degrees of trust in each other, as well as initial values of agents’ and leader’s
opinions.

2 Social Network with Principal

Consider a social network in which there are N + 1 agents, among which there is one
principal and N identical agents.

Suppose that N agents have the same degree of trust in the leader, and the leader
distributes his/her trust among all agents. Then the dynamic equation of the agents’
state has the following form:

x1(t+ 1) = (1− p)x1(t) +
p

N

N∑
j=1

xj(t),

xi(t+ 1) = (1−m)x1(t) +mxi(t), i = 2, ..., N + 1.

(3)

Therefore, the trust matrix has the form:

A =


1− p p

N

p

N
. . .

p

N
1−m m 0 . . . 0

. . .
1−m 0 0 . . . m


Using formula (2), system (3) will take the form
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x1(t) =
1

p−m+ 1

[
(1−m)x0

1 + px0 + p(m− p)t(x0
1 − x0)

]
,

xi(t) =
1

p−m+ 1

[
(1−m)x0

1 + px0 − (1−m)(m− p)t(x0
1 − x0)+

+mt(p−m+ 1)(x0
i − x0)

]
, i = 2, ..., N + 1,

(4)

where x0 =
1

N

N+1∑
j=2

x0
j .

Then x(t) comes to the next steady state:

x(∞) =
1

p−m+ 1

 (1−m)x0
1 + px0

...
(1−m)x0

1 + px0

 . (5)

3 Opinion Dynamics Control

Suppose there is an external player who is interested in bringing the opinions of a
social network to a certain value. The player can influence only the principal. Then
the dynamic equation of the agents’ state will take the following form:

x1(t+ 1) = (1− p+ u)x1(t) +
p− u
N

N∑
j=2

xj(t),

xi(t+ 1) = (1−m)x1(t) +mxi(t), i = 2, ..., N + 1,

(6)

where u = {u(t) : u(t) ∈ [−p, 1− p]} is the player’s control over the principal.
Let us consider the player’s objective function:

J(u) =
∞∑
t=0

δt

[
N∑
i=1

(xi(t)− s)2 + γu2(t)
N∑
i=1

N+1∑
j=i+1

(
xi(t)− xj(t)

)2
]
. (7)

Here t denotes time, 0 < δ ≤ 1 is a discount factor, γ > 0 represent the player’s
costs, and s is fixed value that the player expect all agents’ opinion to reach.

The player aims to minimize his/her objective function with respect to u(t).
Then from (6), taking into account (2), we obtain the dynamic equation

x1(t) = G

[
M + (p− u)(m− p+ u)tK1

]
,

xi(t) = G

[
M − (1−m)(m− p+ u)tK1

]
+mtKi,

i = 2, ..., N + 1.

(8)

and steady state
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x(∞) =
1

p−m− u+ 1

 (1−m)x0
1 + (p− u)x0

...
(1−m)x0

1 + (p− u)x0

 . (9)

Here

G =
1

p−m− u+ 1
,

M = (1−m)x0
1 + (p− u)x0,

Ki = x0
i − x0.

Note that

xi(t)− xj(t) = mt(x0
i − x0

j).

Assuming that the control u(t) is constant, we rewrite function (7) in the following
form

J(u) =
1

1− δ

N+1∑
i=1

(xi(t)− s)2 + γ
u2

1− δm2

N∑
i=1

N+1∑
j=i+1

(x0
i − x0

j)
2.

Numerical simulation results show that by controlling the principal, the player can
shift the steady state of the system towards his/her target value.
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Let Cr(ρ) be the set of all critical circle which maps are C1 conjugate to
fcr ∈ C3 critical circle homeomorphisms having a single xcr critical point and
rotation number ρ := [k, k, k, , ...]. Let µ := µf denote the unique probability
invariant measure of the map f ∈ Cr(ρ). Define a decreasing sequence {cn :=
cn(θ), n ≥ 1} for some θ ∈ (0, 1) is such that a µ−measure of the interval
(xcr, cn] satisfies µ ([xcr, cn]) = θ · µ ([xcr, f

qn(xcr)]) , where qn is the return times
associated with the linear rotation fρ = x+ ρmod1. We study weak convergence
of normalized hitting times. Moreover, we show that limiting distribution is
singular with respect to the Lebesgue measure.

Keywords: circle homeomorphism; critical point; invariant measure;
rotation number; symbolic dynamics.

1 Introduction

This paper aims to investigate week convergence of normilazed hitting times to
shringking target intervals for critical circle maps with a single critical point. The
classical Denjoy’s theorem states that for ergodic circle diffeomorphisms f from class
C2(S1) is topologically conjugated to a linear rotation fρ (see for instance [3]).

Yoccoz in [1] extended Denjoy’s classical result for the class circle maps with one or
more critical points at which the derivative vanishes. Graczyk and Swiatek [2] proved
that for a C3 circle homeomorphism f with finitely many critical points of polynomial
type and an irrational rotation number, the conjugacy ϕ is a singular function on S1,
meaning ϕ′(x) = 0 almost everywhere. As a result, the unique invariant probability
measure µf is singular with respect to Lebesgue measure on the circle.

We assume that the number ρ has a continued fraction expansion

ρ = [k, k, , k, ...] =
1

k + 1
k+...

, k ∈ N.

The last relation shows that ρ is an irrational number of algebraic type. It is well
known that the renormalization transformation Rρ has a unique fixed point fcr in the
space of all analytic critical maps with one cubic critical point xcr with rotation number
ρ.

Let Cr(ρ) denote the class of circle homeomorphisms on the standard circle S1 =
R/Z ' [0, 1) that are C1-conjugate to a fixed critical map fcr. It is well known (see [3])
that topologically conjugate homeomorphisms share the same rotation number. Thus,
every map in Cr(ρ) has the rotation number ρ.
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Now, let f be an orientation-preserving homeomorphism of the circle S1 = R/Z '
[0, 1) with an irrational rotation number ρ = ρf , and let µ = µf be its unique invariant
probability measure. Fix a point z ∈ S1, and define the interval Jε(z) = [z, z+ε] ⊂ S1.
The first hitting time of a point x ∈ [0, 1) to the interval Jε(z) is then defined as

N (1)
ε (x) = inf{i ≥ 1 : f i(x) ∈ Jε(z)}.

The goal is to identify conditions under which the rescaled hitting time converges in
distribution as the interval Jε(z) shrinks. Since the expected hitting time is roughly
1/µ(Jε(z)), it makes sense to rescale by this factor:

E(1)
ε (x) = µ(Jε(z)) ·N (1)

ε (x).

We study whether the distribution function

Fε(t) = µ
(
x ∈ S1 : E(1)

ε (x) ≤ t
)

converges as ε→ 0 at continuity points of the limit.
Ayupov and Jalilov in [7] proved the convergence of this distribution for ρ =

[1, 1, 1, ....]. Coelho and de Faria [4; 5] explored this problem for linear irrational
rotations fρ(x) = x + ρ mod 1, where Lebesgue measure ` is invariant. They showed
that for almost every irrational ρ, the rescaled hitting times in renormalization intervals
[x0, cn] do not converge in law as cn → 0, but all possible limiting distributions along
subsequences {cn} can be characterized.

Fix θ ∈ (0, 1). Let qn be the denominator of the n-th convergent of an irrational
number ρ. For each n, define the point cn(θ) so that

µ([x0, cn(θ)]) = θ · µ([x0, f
qn(x0)]).

Define the hitting time N
(1)
n,θ to the interval [x0, cn(θ)), and the corresponding

rescaled hitting time

E
(1)
n,θ(x) = µ([x0, cn(θ))) ·N (1)

n,θ(x).

Let Fθ,n(t) and Φθ,n(t) denote the distribution functions of E
(1)
n,θ with respect to the

invariant measure µ and Lebesgue measure `, respectively.
Coelho [5] showed that for any converging subsequence Fθ,nm(t), the limiting

distribution Fθ(t) is piecewise linear on [0, 1], with Fθ(t) = 0 for t ≤ 0 and Fθ(t) = 1
for t ≥ 1. This result applies to all circle diffeomorphisms C1-conjugate to irrational
rotations, with µ replaced by Lebesque measure `.

Similar limit theorems for hitting times (often exponential with parameter 1)
have been found in other systems, such as Markov chains, Anosov and Axiom A
diffeomorphisms, and piecewise expanding interval maps.
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2 Main results

Let f be a circle homeomorphism with the rotation number ρ = [k, k, k, ...] and with a
unique probability invariant measure µ := µf . Take an arbitrary point x0 ∈ S1.

Fix an arbitrary point c1 ∈ [f q1(x0), 1). There exists a constant θ ∈ (0, 1] such that

µ([x0, c1]) := θ · µ([f q1(x0), 1]) := θ · µ(I
(1)
0 ). (1)

For every n ≥ 1 we define the numbers cn: = cn(θ) ∈ I(n)
0 (x0) such that

µ(Icn(x0)) := θ · µ(I
(n)
0 (x0)), (2)

where the interval Icn(x0) has endpoints x0 and cn. Moreover,

cn ∈ [f−qn+1(x0), f qn(x0)], n ≥ 1.

The constraction shows that we get the embedded sequence of intervals i.e.

Ic1(x0)) ⊃ Ic2(x0)) ⊃ ...Icn(x0)) ⊃ Icn+1(x0))....

It is important that
lim
n→∞

µ(Icn(x0)) = 0.

Consider the first return time function Rcn : Icn → N as

Rcn(x) := min{j ≥ 1 : f j(x) ∈ Icn}.

The first return times function Rcn(x) takes only 3 values.
Proppsition 1. Let f be a circle homeomorphism with the rotation number ρ =

[k, k, k, ...] and x0 ∈ S1. Assume the constant θ ∈ (0, 1) and cn ∈ I
(n)
0 (x0), n > 1

determined by (1) and (2), respectively.
(I) If n ∈ N is odd, then

Rcn(x) =


qn+2 , x ∈ [cn, f

qn+2(x0)),
qn+3 , x ∈ [f qn+2(x0), f qn+1(cn)),
qn+1 , x ∈ [f−qn+1(cn), x0).

(II) If n ∈ N is even, then

Rcn(x) =


qn+2 , x ∈ [x0, f

−qn+2(cn)),
qn+3 , x ∈ [f−qn+2(cn), f qn+1(x0)),
qn+1 , x ∈ [f qn+1(x0), cn).

To be definite, we consider the case when n is even. The case of odd n can be considered
similarly. Introduce the following notations:

A
(n)
0 := [x0, f

−qn+2(cn)), n ≥ 1,
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C
(n)
0 = [f−qn+2(cn), f qn+1(x0)), n ≥ 1,

B
(n)
0 = [f qn+1(x0), cn), n ≥ 1.

The collection of intervals

ξn(x0, cn) := {A(n)
0 , f(A

(n)
0 ), ..., f qn+2(A

(n)
0 )}

∪{C(n)
0 , f(C

(n)
0 ), ..., f qn+3(C

(n)
0 )}∪

{B(n)
0 , f(B

(n)
0 ), ..., f qn+1(B

(n)
0 )}.

constitute the partition of the circle S1. We denote it by ξn(x0, cn) and call the n−th
generalized dynamical partition associated by the points x0 and cn.

In this paper we study rescaled hitting times for critical circle maps f ∈ Cr(ρ).

The hitting time function N
(1)
n (x) is normalized by its maximum value qn+3, yielding

the rescaled form

E(1)
n (x) =

1

qn+3

N (1)
n (x).

We denote the distribution function of E
(1)
n (x) with respect to Lebesgue measure

on S1 by Φn,θ(t). Now, we formulate the main results of present work.
Theorem 2. The distribution function of the rescaled hitting time function

E
(1)
n (x) has the following form:

i) if t < 1/qn+3, then Φn,θ(t) = 0,

ii) if m/qn+3 ≤ t ≤ (m+ 1)/qn+3, 1 ≤ m ≤ qn+1, then

Φn,θ(t) =

qn+1−1∑
i=qn+1−m

|B(n)
i |+

qn+2−1∑
j=qn+2−m

|A(n)
j |+

qn+3−1∑
k=qn+3−m

|C(n)
k |,

iii) if m/qn+3 ≤ t ≤ (m+ 1)/qn+3, qn+1 ≤ m ≤ qn+2, then

Φn,θ(t) =

qn+1−1∑
i=0

|B(n)
i |+

qn+2−1∑
j=qn+2−m

|A(n)
j |+

qn+3−1∑
k=qn+3−m

|C(n)
k |,

iv) if m/qn+3 ≤ t ≤ (m+ 1)/qn+3, qn+2 ≤ m ≤ qn+3 then

Φn,θ(t) =

qn+1−1∑
i=0

|B(n)
i |+

qn+2−1∑
j=0

|A(n)
j |+

qn+3−1∑
k=qn+3−m

|C(n)
k |,

v) if t ≥ 1, then Φn,θ(t) = 1, where |L(n)
i | is lebesque measure of Lni .

The above theorem shows that the normalized hitting times are discrete random
variables and its distribution function is step function. Moreover, the values of
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distribution function defined by invariant measures of intervals of dynamical partition.

Theorem 2. Let ρ = [k, k, k, ...] and let f ∈ Cr(ρ) be critical circle map. Consider
for θ ∈ (0, 1) the sequence of distribution functions {Φn,θ(t)}∞n=1 with respect to

Lebesgue measure on circle corresponding to the first rescaled hitting times E
(1)
n,θ(x)

to interval [xc, cn(θ)]. Then
1) for all t ∈ R1 there exists the finite limit

lim
n→∞

Φn,θ(t) = Φθ(t),

where Φθ(t) = 0, if t ≤ 0, and Φθ(t) = 1, if t > 1 ;
2) the limit function Φθ(t) is a strictly increasing on [0, 1] and continuous

distribution function on R1;
3) Φθ(t) is singular on [0, 1] i.e. Φθ(t)

dt
= 0 a.e. with respect to Lebesgue measure `

on the circle.

The last theorem shows that the sequence of discrete rescaled hitting times weekly
converges to a continues distribution function. Notice that the limit distribution
function is singular on interval [0, 1], i.e. it is continues , strictly increasing and its
derivative is zero almost everywhere with respect to Lebesque measure ` on [0, 1].
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Based on China’s provincial panel data, this study uses entropy weight model
and vector autoregressive model to measure the economic growth quality of
high-tech industries in China and test the interaction effect among regions. It
is found that the quality of economic growth of high-tech industries in China
has shown a steady growth trend during the study period, but there are obvious
differences in the growth level among regions. The economic growth quality of
high-tech industries in the eastern region is obviously stronger than that in the
central region and the western region. In addition, the economic growth quality
of high-tech industries in the eastern region is likely to have a siphon effect on the
central region and the western region, while the central region is likely to have a
radiation effect on the western region.

Keywords: high-tech industry; economic growth; growth quality; regional
linkage; entropy weighting; vector autoregressive.

1 Introduction

The quality of economic growth in high-tech industries and regional linkages determine
the sustainability of a country’s high-quality national economic development [1].
Therefore, this study takes China as an example to design a method to effectively
evaluate the quality of economic growth in high-tech industries and regional linkage.

2 Methods and Methodology

Entropy weight model. In order to ensure that the evaluation results are more
comprehensive and objective, referring to the existing research [2], this study adopts the
entropy weight model to integrate various single indicators, and evaluates the economic
growth quality of China high-tech industry by linear weighted summation. The specific
model is established as follows.

Zij =
Xi,j −min(Xj)

max(Xj)−min(Xj)
× 0.999 + 0.001,
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Fig. 1. Measurement results and Changing trends in the quality of economic growth in
China’s high-tech industry

Hj = − 1

ln(n)

n∑
i=1

pi,j ln pi,j,

Wj =
1−Hj∑m

j=1(1−Hj)
=

1−Hj

m−
∑m

j=1Hj

,

Si =
m∑
j=1

WjZi,j.

In the above formula, Si represents the economic growth quality of the high-tech
industry of the i-th target to be evaluated. The larger the value of Si, the higher the
quality. Zi,j and Xi,j respectively represent the j-th standardized and non-standardized
original indicator of the target i to be evaluated. max(Xj) and min(Xj) represent the
maximum and minimum values of the j-th indicator respectively. Hj represents the

entropy value of the jth indicator. pi,j =
Zi,j∑n
i=1 Zi,j

. When pi,j = 0, let pi,j ln pi,j = 0, and

ensure that 0 ≤ Hj ≤ 1. Wj represents the weight of the jth indicator. 0 ≤ wj ≤ 1,
and

∑m
j=1wj = 1.

In terms of indicators selection, this study selects the number of high-tech industry
enterprises, high-tech industry operating income, high-tech industry total profit,
high-tech industry operating profit margin and high-tech industry operating income
as the indicator system to evaluate the quality of high-tech industry economic growth.
The measurement results are shown in Figure 1.

Vector autoregressive model. In order to test the interactive effect of the economic
growth quality of high-tech industries in various regions of China, referring to existing
research [3], this study chooses to use a vector autoregression model to estimate the
response of each region to each other’s shocks. The results of the Phillips-Perron unit
root test show that the logarithmic series have reached a stable state and can be directly
used for modeling. In addition, the AIC, SC and HQ information criteria and stability
test results show that the first-order lag is the optimal lag order. The specific model
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is established as follows:
Qt = A · Qt−1 + α + µt,

where Qt = (ln Et, ln Ct, lnWt)
′ ∈ R3 is a 3-vector-column, Et, Ct and Wt are the

qualities of high-tech industry economic growth in the eastern region, the central region
and the western region respectively, A = (Ai,j)

3
i,j=1 ∈ R3×3 is a (3 × 3)-matrix of the

coefficients to be estimated, α = (αi)
3
i=1 ∈ R3 is a 3-vector-column of constant terms,

µt = (µt,i)
3
i=1 ∈ R3 is a 3-vector-column of random perturbation terms.

Data source. In this study, the data for measuring the quality of high-tech industry
economic growth in China are all from China Statistical Yearbook and China Statistical
Yearbook of Science and Technology.

3 Results and analysis

Figure 1 reports the measurement results and changing trends of the quality of economic
growth in high-tech industries in China and its regions. The results show that the
quality of economic growth in high-tech industries in China has been growing steadily
during the study period, but there are obvious regional differences. The eastern region
is significantly stronger than other regions.

Figure 2 reports the interactive effect of the quality of high-tech industry economic
growth among different regions in China. The results show that: the improvement of
the economic growth quality of high-tech industries in the central and western regions
can promote the economic growth quality of high-tech industries in the eastern region,
while the improvement of the economic growth quality of high-tech industries in the
eastern region not only cannot effectively drive the improvement of the economic growth
quality of high-tech industries in the central and western regions, but may even have
a phased negative impact on them. Considering that the economic growth quality of
high-tech industries in the eastern region is far better than that in the central and
western regions, the economic growth quality of high-tech industries in the eastern
region is likely to have a siphon effect on the central and western regions. At the
same time, the improvement of the economic growth quality of high-tech industries in
the central region can promote the economic growth quality of high-tech industries in
the western region, but the improvement of the economic growth quality of high-tech
industries in the western region cannot effectively improve the economic growth quality
of high-tech industries in the central region. Considering that the economic growth
quality of high-tech industries in the central region is slightly better than that in the
western region, the central region is likely to have a radiation effect on the western
region.

4 Conclusion

Based on China’s provincial panel data from 2012 to 2023, this study uses the entropy
weighted model to measure the quality of high-tech industry economic growth in China
and in each region, and on this basis, uses the vector autoregression model to test the
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Fig. 2. Interactive effects of high-tech industry economic growth quality among different
regions in China

interactive effect of the quality of high-tech industry economic growth in each region
of China. The main conclusions are as follows: First, the quality of high-tech industry
economic growth in China is showing a stable growth trend, but with obvious regional
differences. The quality of high-tech industry economic growth in the eastern region
is significantly stronger than that in other regions. Second, the quality of high-tech
industry economic growth in the eastern region is likely to have a siphon effect on the
central and western regions, and the central region is likely to have a radiation effect
on the western region.
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The problem of sequential testing of hypotheses on parameters of a stochastic
data flow is considered under distortions (deviations from the hypothetical model
assumptions). Simple and composite hypotheses setting are investigated for
different hypothetical models of data. The interest is focused on three areas:
performance characteristics (error probabilities and mathematical expectation of
the random number of observations) calculation; robustness analysis of sequential
tests under distortions; computer implementation of the considered sequential
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1 Introduction

In computer analysis of stochastic data, tasks of hypotheses testing appear quite
frequently. To solve these problems mathematically, probability models and the
approach based on sequential analysis [11] are intensively used [9], where the number
of observations is considered to be not fixed a priori, supposed to be a random variable
that depends on stochastic observations themselves. The sophisticated scheme of
statistical inference in sequential analysis results in optimality of the decision process
(the expected number of observations is minimized via that scheme provided error
probabilities are restricted below predefined small levels) [10], with the price that the
performance characteristics of sequential tests (error probabilities, expected number of
observations) are problematic to be calculated with a given accuracy even for basic
hypothetical probability models of data flows [8].

Sequential statistical tests are constructed mathematically to be optimal [1] under
the hypothetical model of stochastic data flow, but in practice they are applied to real
data sets that do not follow that hypothetical model exactly, the hypothetical model
is distorted [2; 4; 7].

In the talk we present the results on performance and robustness analysis [6] of
sequential statistical tests under simple and composite hypotheses setting for different
models of stochastic data under distortions, and on robust sequential test construction.
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2 Independent homogeneous observations

2.1 Case of simple hypotheses

Let on a probability space (Ω,F , P ) random variables x1, x2, . . . be defined, ∀t ∈ N,
xt ∈ U = {u1, u2, . . . , uM}, M < ∞, u1 < u2 < · · · < uM . Let these random variables
be independent identically distributed, from a discrete probability distribution with a
parameter θ ∈ Θ = {θ0, θ1}:

P (u; θ) = Pθ{xt = u} = a−J(u;θ), t ∈ N, u ∈ U, (1)

a ∈ N \ {1}; J(u; θ): U ×Θ −→ N0 is a function satisfying
∑

u∈U a
−J(u;θ) = 1.

Consider two simple hypotheses w.r.t. the parameter θ:

H0 : θ = θ0, H1 : θ = θ1. (2)

Introduce the notation:

Λn = Λn(x1, . . . , xn) =
∑n

t=1
λt; λt = loga (P (xt; θ1)/P (xt; θ0)) ∈ Z.

To test hypotheses (2) by n (n = 1, 2 . . . ) observations consider the sequential
probability ratio test (SPRT) [11]:

dn = 1[C+,+∞)(Λn) + 2 · 1(C−,C+)(Λn), (3)

where 1D(·) is the indicator function of the set D. The decisions dn = 0 and dn = 1
mean stopping of the observation process and the acceptance of the appropriate
hypothesis. The decision dn = 2 means that it is necessary to make the (n + 1)-th
observation. In (3) the thresholds C−, C+ ∈ R, C− < C+ are the given values
(parameters of the test). According to [11], we use

C+ = [loga ((1− β0)/α0)] , C− = [loga (β0/(1− α0))] , (4)

where α0, β0 are given maximal possible values of the probabilities of type I and type
II errors respectively. In fact, the true values α, β for the probabilities of type I and
type II errors differ from α0, β0 [3].

For this model of data, the performance characteristics (error probabilities α, β
and the mathematical expectations of the sample size t0, t1 under the correspondent
hypothesis being true) are calculated in the explicit form in [4]. In the situation,
where the assumption 1 does not hold, the approach to calculate the performance
characteristics is given in [3].

For the case of distorted observations, the correspondent asymptotic expansions
(w.r.t. one more extra parameter – the distortion level) are derived. The robust
sequential test is constructed.
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2.2 Binary random vectors case

The case where U = {u1, . . . , u2K} =


u1
...
uK

, ui ∈ {0, 1}, i = 1, . . . , K

 is considered

specifically. For this case, the test statistic is

Λn = Λn(x1, . . . , xn) = n0

(
J(0; p0)− J(0; p1)

)
+ (n− n0)

(
J(1, p0)− J(1, p1)

)
,

where n0 is used for the number of observations equal to 0; J(·, ·) is a function described
in (1); p0 and p1 are parameter vectors of the probabilities.

For the case of distorted observations, the correspondent asymptotic expansions are
justified, and the minimax robust sequential test is constructed.

2.3 Multivariate data with block structure

In modern applied problems of econometrics, medicine, insurance and some others, data
are often characterized by a high dimension. Also observations are characterized by a
block structure: they can be split into blocks that may be considered as stochastically
independent:

xi =

(
x1
i

... . . .
...xKi

)
, i = 1, 2, . . . .

This allows to use sequential scheme also within observations themselves, taking
one block after another. Two positive aspects are brought with this scheme: if some
components are missed, nevertheless the sequential test still can be used; mathematical
expectation of the sample size becomes even less if compare to the case where entire
observations only can be used. Both aspects are especially important when the number
of observations is highly critical.

For this model of data, robustness analysis is performed and robust sequential tests
are constructed.

2.4 Case of composite hypotheses

Suppose a sequence x1, x2, . . . of i.i.d. random variables is observed from a continuous
distribution with the p.d.f. p(x | θ), where θ ∈ Θ ⊆ R is an unknown value of random
parameter. Consider two composite hypotheses [5]

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1; (5)

Θ0,Θ1 ∈ Θ, Θ0 ∩Θ1 = ∅. Assume that the prior p.d.f. p(θ) is known.
One of the possible techniques to test the hypotheses (5) is using of weight functions

proposed by Wald [11]. Introduce the notation:

Wi =

∫
Θi

p(θ)dθ, wi(θ) =
1

Wi

· p(θ) · 1Θi(θ), θ ∈ Θ, i = 0, 1; (6)
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Λn = Λn(x1, . . . , xn) = ln

∫
Θ
w1(θ)

∏n
i=1 p(xi | θ)dθ∫

Θ
w0(θ)

∏n
i=1 p(xi | θ)dθ

. (7)

For testing hypotheses (5), under the notation (6), (7) the following parametric
family of tests is used:

N = min{n ∈ N : Λn 6∈ (C−, C+)}, (8)

d = 1[C+,+∞)(ΛN), (9)

where (8) gives the stopping rule, N is the random number of the observation, at which
the decision d is made according to (9); d = i means that the hypothesis Hi, i = 0, 1,
is accepted; C− < 0, C+ > 0 are parameters of the test, which are usually choosen in
practice according to (4).

Expressions in the explicite form are derived for the special case of the data
distribution, and asymptotic expansions are constructed in the general case for the
performance characteristics, also under distortions. The robust sequential test is
constructed by the minimax risk criterion.

3 Heterogeneous observations

Let x1, x2, ... be observations of time series with a trend:

xt = θTψ(t) + ξt, t = 1, 2, 3, ...,

where ψ(t) = (ψ1(t), ψ2(t), ..., ψm(t))T , t ≥ 1, are the vectors of basic functions of
trend, θ = (θ1, θ2, ..., θm)T ∈ Rm is an unknown vector of coefficients, and {ξt, t ≥ 1} is
the sequence of independent identically distributed random variables, ξt ∼ N (0, σ2).

Consider two simple hypotheses (2).
Denote the accumulated log-likelihood ratio statistic: Λn = Λn(x1, x2, ..., xn) =∑n
t=1 λt, where λt = ln

(
pt(xt,θ1)
pt(xt,θ0)

)
is the log-likelihood ratio calculated on the

observation xt, and pt(x, θ) is the probability density function of xt provided the
parameter value is θ.

To test these hypotheses, decision rule (3) is used.
For this model of data, the approach to calculate the performance characteristics

of the sequential test is developed.
The situation where certain observations can be missed, is considered. The

sequential test for this situation is constructed and its performance characteristics
are evaluated.

The case of M > 2 simple hypotheses is also considered w.r.t. the vector θ. The
following two sequential test were analyzed.

M -ary sequential probability ratio test. It uses the posterior probabilities of the
hypotheses. The stopping time Na and the final decision da for this test are defined by
the equations:

Na = inf

{
n ≥ 1 : ∃m ∈ {1, . . . ,M}, P{Hm | x1, . . . , xn} >

1

1 + Am

}
,

102



da = arg max
1≤m≤M

P{Hm | x1, . . . , xNa},

where Am ∈ (0, 1] are some specified constants, m ∈ {1, . . . ,M}, da = m means that
the decision in favor of the hypothesis Hm is made.

Matrix sequential probability ratio test. Denote

Λn(i, j) = ln

(
n∏
t=1

n1(xt; (θi)
Tψ(t), σ2)

n1(xt; (θj)Tψ(t), σ2)

)
;

τi = inf{n ∈ N : Λn(i, j) > bij, ∀j ∈ {1, . . . ,M} \ {j}}, i ∈ 1, . . . ,M,

where B = (bij), i, j ∈ {1, . . . ,M}, is the matrix of the test thresholds (using them,
the error probabilities of the test are controlled by the user f the decision rule). For
this test the stopping time Nb and the final decision db are defined as follows:

Nb = min{τi : i ∈ {1, . . . ,M}}, db = arg min
i∈{1,...,M}

τi.

For the two sequential tests defined above, the termination with probability 1
property and the finiteness of all moments of the random stopping time are proved.
For the M-ary sequential probability ratio test, upper bounds for the error probabilities
are derived. A robustified version of the matrix sequential probability ratio test is
constructed and its properties are analyzed via numerical experiments.

4 Observations with Markov dependencies

Let the data flow be dependent observations forming a homogeneous Markov chain
x1, x2, . . . , with possible values in the set V = {0, 1, . . . ,M − 1}. Denote the vector of
initial states probabilities by π = (πi), i ∈ V , and the one-step transition probabilities
matrix by P = (pij), i, j ∈ V , that are: P{x1 = i} = πi, P{xn = j | xn−1 = i} = pij,
i, j ∈ V , n > 1.

There are two hypotheses concerning the Markov chain parameters introduced
above: H0: π = π(0), P = P (0) with the alternative H1: π = π(1), P = P (1), where π(0),
π(1) are the given values of the initial states probabilities vector, P (0) 6= P (1) are the
one-step transition probabilities matrices for correspondent hypotheses. Denote also:

λ1 = ln
P1{x1}
P0{x1}

, λk = ln
P1{xk | xk−1}
P0{xk | xk−1}

, k > 1, Λn =
n∑
k=1

λk, n ∈ N,

where Ps{x1} is the probability to observe the value x1, Ps{xk | xk−1} is the probability
to observe xk at the moment k provided at the moment k − 1 the value xk−1 was
observed, if hypothesis Hs, is true s ∈ {0, 1}.

Construct the sequential decision rule to decide in favor of H0 or H1. According
to this decision rule, with given thresholds values C−, C+ ∈ R, C− < 0, C+ > 0,
hypothesis H0 is accepted on the basis of n observations, if Λn ≤ C−. Hypothesis H1 is
accepted, if Λn ≥ C+, otherwise the observation process is not stopped, and (n+ 1)-th
observation is requested.
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Correspondent families of modified sequential decision rules are developed. Within
the developed families, the robust sequential decision rules are constructed with the
minimax risk criterion. Results are generalized to the situation where data form a high
order Markov chain.

5 Implementation and conclusion

The sequential tests considered in the talk are implemented in the form of the
computer procedures and are forming the library within R statistical software. Each
procedure includes the likelihood ratio sequential test implementation, calculation of
its performance characteristics, robustness analysis, and a robustified version.

The future research includes sequential test construction and analysis under missing
values and partially available observations.
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1 Introduction

Digitalization of any society gives a significant rise to a lot of discrete-valued data.
If a discrete-valued data are considered and analyzed in dynamics (in dependence of
discrete time t ∈ Z we get a discrete-valued time series (DTS) xt ∈ A, where A is some
discrete set:

A = {0, 1, . . . , N − 1}, N = |A|, 2 ≤ N < +∞.

The existed theory of probabilistic and statistical analysis of time series is deep
developed for the so-called “continuous” time series when A is a nonzero Lebesque
measure subset in Rm for some m ∈ N. But for the DTS this theory is on the
beginning stage only [1]. The main problem in this stage appears in modeling of high
depth stochastic dependencies in DTS {xt}.

Indicate main possible applications of this theory in practice: genetics (computer
recognition and analysis of genetic sequences, N = 4); economics and finance
(prediction of financial time series); sociology (modeling of social behavior); medicine
(computer diagnostics, monitoring in personalized medicine; cybersecurity (evaluation
of the safety for computer information systems, N = 2).

A short history of the development of the theory of statistical analysis for DTS can
be found in [2–4]. A fresh review [5] indicates following topical research directions:
1) methods based on the generalized linear model GLM; 2) methods based on the
integer autoregression; 3) models governed by dynamical parameters; 4) parsimonious
models based on high order Markov chains. This paper aims to contribute to the
appearing theory in the fourth direction.
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2 Parsimonious models for high order Markov

chains and approaches to construction of these

models

An universal model for description of high depth stochastic dependencies is proposed
by J. Doob: the homogeneous Markov chain (MC(s)) of sufficiently large order s ∈ N
on some probabilistic space (Ω,F ,P). It is determined by the conditional transition
probabilities:

P{xt = jt|Ft−1} = P{xt = jt|X t−1
t−s = J t−1

t−s } = pJt−1
t−s ,jt

, t ∈ Z, (1)

where Ft−1 = σ ({xτ : τ ≤ t− 1}), X t−1
t−s = (xt−s, . . . , xt−1)′ ∈ As, Js1 =

(j1, . . . , js)
′∈As, P =

(
pJs+1

1

)
, Js+1

1 ∈ As+1 is the (s+1)-dimensional matrix of one-step

transition probabilities.
Under the well known ergodicity conditions [1] there exists the single stationary

s-dimensional distribution πJs1 , Js1 ∈ As, satisfying the system of linear algebraic
equations: ∑

j1∈A

πJs1pJs+1
1

= πJs+1
2
, Js+1

2 ∈ As;∑
Js1∈As

πJs1 = 1.
(2)

Theorem 1. The s-dimensional stationary distribution (2) determines all
finite-dimensional joint probability distributions for the MC(s), T ∈ N:

P{x1 = j1, x2 = j2, . . . , xT = jT} =



∑
jT+1,...,js∈A

πJs1 , if T < s,

πJs1 , if T = s,

πJs1

T∏
t=s+1

pJt−1
t−s ,jt

, if T > s.

For the universality of the MC(s)-model we need to pay by its complexity:

the number of independent parameters P =
(
pJs+1

1

)
of this model DMC(s) =

N s(N − 1) = O (N s+1) increases exponentially w.r.t. the order s. To avoid this
“curse of dimensionality” we propose to use parsimonious Markov chains of order s
(PMC(s)) that have parsimonious parametric representation of the one-step transition
probabilities matrix:

P =
(
pJs+1

1

)
, pJs+1

1
=:: pα

(
Js+1

1

)
, α = (α1, . . . , αd)

′ ∈ Rd, (3)

where α is the vector parameter with a small dimensionality d = DPMC(s) � DMC(s);
the compression coefficient κ = DPMC(s)/DMC(s) � 1.
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We develop four approaches to construction of PMC(s): 1) reduction of the set of
possible values for the elements of matrix P ; 2) using of standard parametric families
of discrete probability distributions for transition probabilities; 3) PMC(s) based on
artificial neural networks; 4) PMC(s) based on exponential families and sufficient
statistics.

3 PMC(s) based on reduction of the set of

transition probabilities

Let Q =
(
qJr+1

1

)
be some stochastic (r + 1)-dimensional matrix (1 ≤ r < s):

0≤ qJr+1
1
≤1, Jr+1

1 ∈Ar+1,
∑

jr+1∈A

qJr+1
1
≡1; B = B(Js1 ;α) : As×Rm→Ar, be some discrete

function with a parameter α=(αi) ∈ Rm. Then the (s + 1)-dimensional matrix of
transition probabilities P is reduced into the (r + 1)-dimensional matrix Q by the
discrete transformation:

pj1,...,js,js+1 = qB(j1,...,js;α),js+1 , Js+1
1 ∈ As+1. (4)

The total number of parameters for the model (4) is d = N r(N − 1) +m.
Examples for the model (4) are: Markov chain MC(s, r) of order s with r partial

connections [6;7]; Markov chain of conditional order MCCO(s, L) [8;9]; variable length
Markov chain [4].

Illustrate now our results on the family (4) for the MC(s, r)-model [6; 7]:

pj1,...,js,js+1 = qj
m0

1
,...,j

m0
r
,js+1 , Js+1

1 ∈ As+1, (5)

where r ∈ {1, 2, . . . , s} is the number of connections; M0
r = (m0

1,m
0
2, . . . ,m

0
r) is the

connection template; Q =
(
qJr+1

1

)
, Jr+1

1 ∈ Ar+1, is the (r + 1)-dimensional stochastic

matrix. If r = s, then MC(s, s) ≡ MC(s) is the Markov chain with full connections.
Introduce the notation: Xn

1 = (x1, x2, . . . , xn) is an observed realization of length
n∈N; F

(
X t+s
t ;Mr

)
= (xt+m1−1, . . . , xt+mr−1, xt+s) is the selector function of the (r +

1)-th order; 1{B} is the indicator function of the event B; the dot “•” used instead of
any index means summation on all its values;

νJr+1
1

(Mr) =
n−s∑
t=1

1{F
(
X t+s
t ;Mr

)
= Jr+1

1 }, Jr+1
1 ∈ Ar+1;

µ̂Jr+1
1

(Mr) = νJr+1
1

(Mr)/(n− s);
(6)

Îr+1(Mr) =
∑

Jr+1
1 ∈Ar+1

µ̂Jr+1
1

(Mr) ln
µ̂Jr+1

1
(Mr)

µ̂Jr1•(Mr)µ̂•jr+1

≥ 0

is the “plug-in” estimator of the Shannon information.
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Theorem 2. MLEs M̂r, Q̂ =
(
q̂Jr+1

)
, Jr+1 ∈ Ar+1, for the parameters M0

r , Q0 are
determined by the following expressions:

M̂r = arg max
Mr∈M

Îr+1(Mr), (7)

q̂Jr+1
1

=

 µ̂Jr+1
1

(
M̂r

)
/µ̂Jr1•

(
M̂r

)
, if µ̂Jr1•

(
M̂r

)
> 0,

1/N, if µ̂Jr1•

(
M̂r

)
= 0.

(8)

Theorem 3. If MC(s, r) determined by (5) is stationary and the connection template
M0

r ∈ M satisfies the identification condition, then at n→∞ MLEs M̂r, Q̂ determined
by (7) are consistent:

M̂r
P−→M0

r , Q̂
L2−→ Q0, (9)

∆2
n = E

{∥∥∥Q̂−Q0
∥∥∥2
}

=
1

n− s
·

∑
Jr+1

1 ∈Ar+1

(
1− q0

Jr+1
1

)
q0
Jr+1

1

µJr1• (M0
r )

+ o

(
1

n

)
. (10)

4 PMC(s) based on parametric families of standard

discrete distributions for transition probabilities

Let {qj(θ) : j ∈ A} be some standard discrete probability distribution on A with
some parameter θ = (θj) ∈ Θ ⊆ RL; θ = θ(j1, . . . , js;α) : As × Rm → RL be some
parametric function with a parameter α ∈ Rm that determines dependence on the
prehistory. Generating equation for transition probabilities is:

pJs+1
1

= qjs+1 (θ(Js1 ;α)) , Js+1
1 ∈ As+1. (11)

Examples for the PMC(s)-model (11) are: Jacobs-Lewis model [2]; Raftery
model [3]; Binomial conditionally nonlinear autoregressive model BiCNAR(s) [10; 11];
Semibinomial conditionally nonlinear autoregressive model SBiCNAR(s) [10]; Binary
conditionally nonlinear autoregressive model BCNAR(s) [12]; Poisson conditionally
nonlinear autoregressive model ΠCNAR(s) [13].

Illustrate here our results on the BiCNAR(s) model:

P
{
xt=jt|X t−1

−∞=J t−1
−∞
}
≡P

{
xt=jt|X t−1

t−s=J t−1
t−s
}

=Cjt
N−1p

jt
t (1−pt)N−1−jt ,

jk∈A, k∈Z;

pt = p
(
J t−1
t−s
)

= F0

(
J t−1
t−s
)
, t ∈ Z,

(12)

where pt ∈ [0, 1] is the parameter of the Binomial distribution. Consider the case
when the function F0(·) in (12) is approximated by the given system of m linearly
independent on As base functions ψ(Js1) = (ψi(J

s
1)) ∈ Rm:

F0

(
J t−1
t−s
)

::= F

(
m∑
i=1

aiψi
(
J t−1
t−s
))

, J t−1
t−s ∈ As, (13)
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where F (·) : R1 → [0, 1] is some absolutely continuous distribution function; B = (bi)
are unknown parameters of the model.

To estimate unknown parameters {ai} by an observed realization
XT

1 =(x1, ..., xT )∈AT of length T ∈ N we use the FBE-method [12]. Introduce
the notation:

νTs (Js1) =
T∑
t=s

1
{
XT
t−s+1 = Js1

}
, Js1 ∈ As; J (T ) =

{
Js1 ∈ V s : νTs (Js1) > 0

}
⊆ As;

π̂Js1 =
νTs (Js1)

(T − s+ 1)
, p̂J=


T∑

t=s+1

xt1
{
X t−1
t−s = J

}
(N−1)π̂Js1

, J∈J (T ); û(Js1)=F−1
(
p̂Js1
)
, Js1∈J(T );

1/N, J /∈ J (T ),

D = (dkl) =
∑

Js1∈J(T )

ψ(Js1)ψ′(Js1) ∈ Rm×m, E = (ek) =
∑

Js1∈J(T )

û(Js1)ψ(Js1) ∈ Rm. (14)

Theorem 4. If the PMC(s) xt ∈ A determined by (12)–(14) is ergodic and |D| 6=
0, then for the increasing length of the time series T → +∞ there exists the

FBE-estimator B̂=
(
b̂i

)
=D−1E that is consistent: B̂

P−→ B0, and asymptotically

normal:
√
T (B̂ − B0)

D−→ Nm(Om,Σ), Σ =
(
ΨTΨ

)−1
ΨTΛΨ

(
ΨTΨ

)1
, where Λ is the

known (N s×N s)-matrix [14] and the (m × N s)-matrix Ψ consists of N s m-columns
ψ(J) for all lexicographically ordered values J ∈ As.

5 PMC(s) based on Artificial Neural Networks

(ANNs)

Illustrate an application of ANNs for modelling of high depth stochastic dependencies
for the example of BiCNAR(s) model (12). Instead of the basic approximation (13)
let us use the neural network approximation [15]:

F0 (Js1) = F

(
m∑
i=1

biFi

(
s∑

k=1

aikjk

))
, Js1 ∈ As, (15)

where F (·), F1(·), . . . , Fm(·) : R1 → [0, 1] are some given absolutely continious
distribution functions; 2 ≤ m < +∞; B = (b1, . . . , bm)′ ∈ Rm, Ai = (ai1, . . . , ais)

′ ∈ Rs,
i ∈ {1, . . . ,m} are unknown parameters. The nonlinear dependence (15) is represented
by the ANN (see Figure 1) with s inputs, one output, m neurons in the first layer and
one neuron in the second layer. Number of parameters depends linearly on the order
s : d = m(s+ 1).
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Let us note, that the problem of statistical estimation of parameters B,A1, . . . , Am
by the observed time series XT

1 is invariant to the substitution:

B̃ =
(
b̃1, . . . , b̃m

)
, Ãi = (ãi1, . . . , ãim) ,

b̃i = bπi , ãij = aπij, j = 1, . . . , s; i = 1, . . . ,m,

where π = (π1, . . . , πm) is an arbitrary substitution on {1, 2, . . . ,m}. In [15] we propose
an algorithm to construct consistent estimators B̂, {Âi}.
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Fig. 1. ANN representing the approximation (15)

6 PMC(s) based on exponential families and

sufficient statistics

This class of PMC(s) models is determined by the following exponential family of
conditional transition probabilities (1):

P
{
xt=js|Xs−1

t−s =Js−1
0

}
= exp

{
h0

(
js; J

s−1
0

)
+

m∑
i=1

ηihi
(
js; J

s−1
0

)
−ϕ

(
η; Js−1

0

)}
,

ϕ
(
η; Js−1

0

)
= ln

∑
js∈A

exp

{
h0

(
js; J

s−1
0

)
+

m∑
i=1

ηihi
(
js; J

s−1
0

)}
, Js0 ∈ As+1,

(16)

where {h1(·), . . . , hm(·)} are known base functions called sufficient statistics. For
abbreviation we call this model MCSS(s): Markov chain of order s with sufficient
statistics. The problem of statistical estimation of the unknown parameters η = (ηi) ∈
Rm is solved in [16].
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7 Application of the developed theory in computer

analysis of real data sets

All algorithms based on the developed theory were tested on simulated data and
illustrated good accordance with the proved theoretical properties. Here we give some
results of computer experiments with the developed algorithms on real data.

7.1 Modelling of the wind speed data

The discrete-valued time series of the daily average wind speed at Malin Head (North
of Ireland during the period 1961 – 1978) xt ∈ {0, 1, 2}, N = 3, of the length T = 6574
was fitted by the MC(s, r)-model for s = {1, 2, . . . , 7}, r = {1, 2, . . . , 7}. Table 1
presents the values of the BIC for different pairs (s, r).

Table 1
Bayesian Information Criterion for models of the wind speed data

Model BIC Model BIC Model BIC Model BIC
MC(1,1) 8127.52 MC(4,2) 8139.12 MC(5,5) 8621.97 MC(7,1) 9041.43
MC(2,1) 8777.63 MC(4,3) 8164.79 MC(6,1) 9016.23 MC(7,2) 8163.07
MC(2,2) 8096.08 MC(4,4) 8332.77 MC(6,2) 8148.48 MC(7,3) 8197.91
MC(3,1) 8849.90 MC(5,1) 8984.10 MC(6,3) 8190.78 MC(7,4) 8323.19
MC(3,2) 8079.81 MC(5,2) 8129.83 MC(6,4) 8350.82 MC(7,5) 8599.09
MC(3,3) 8143.13 MC(5,3) 8177.92 MC(6,5) 8576.92 MC(7,6) 8973.15
MC(4,1) 8956.11 MC(5,4) 8349.62 MC(6,6) 8969.54 MC(7,7) 9575.64

The best fitted model is the MC(3,2) with M̂r = (1, 3) and the transposed matrix

Q̂′ =

 0.27 0.08 0 0.22 0.04 0 0.21 0.02 0
0.73 0.86 0.63 0.78 0.82 0.52 0.79 0.72 0.43
0 0.06 0.37 0 0.14 0.48 0 0.26 0.57

 .

The fitted model MC(3, 2) detects significant dependencies in this data.

7.2 Genomic sequencing

We used the drosophila genome sequence (www.fruitfly.org): N=4, T=5 · 105, s−=1,
s+ = 8, r− = 1, r+ = 8. The best fitted model is the MC(6, 3) with the template
M̂r=(1, 5, 6) and the matrix Q̂ visualized in Figure 2. Here on “x-axis” the values of M̂r-
prehistory are indicated, “y-axis” gives the values of one-step transition probabilities
to four states indicated by different levels of color.
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Fig. 2. Visualization of the matrix Q̂ for the genomic sequencing

7.3 Analysis of CG-patterns in genome

We took the complete Panthera tigris mitochondrion genome of the length T=16990
(available from NCBI Nucleotide data base, ID EF551003.1) and extracted the binary
sequence xt of its CG-indicators: xt = 1 iff the t’th nucleotide is Guanine or Cytosine,
t = 1, . . . , T . Portion of “1” in XT

1 is known as CG-content and plays important role
in bioinformatics.

In order to evaluate individual and pairwise impact of the lagged variables X t−1
t−s

on xt we fitted the BCNAR(s)-model (up to s = 15) for N = 2 with the bilinear
bases {ψi(·)} and the Gaussian c.d.f. F (·) = Φ(·). Two fitted BIC – adequate
BCNAR-models for s = 10; 15 respectively, are (ζt = (−1)xt):

P{xt|xt−1, . . .} = Φ(−0.3962 + 0.0313ζt−1 + 0.0241ζt−3 + 0.033ζt−10+

+0.045ζt−3ζt−6 − 0.0576ζt−3ζt−10),

P{xt|xt−1, . . .} = Φ(−0.1319 + 0.022ζt−1 + 0.0269ζt−6 + 0.0248ζt−15−

−0.0434ζt−6ζt−15),

8 Conclusion

This paper summarizes research results in the Research Institute for Applied Problems
of Mathematics and Informatics on the development of the probabilistic and statistical
analysis of high order Markov chains. To avoid the hard “curse of dimensionality”
we propose some approaches to construct parsimonious models for high order Markov
chains. These approaches are illustrated on parsimonious models constructed by new
methods and algorithms for statistical estimation of model parameters. Theoretical
results are accompanied by computer analysis of real data sets. The developed
theory should be extended for statistical analysis of multivariate and space-temporal
discrete-valued sequences.
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DATA BY THE SCDD PYTHON LIBRARY
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We present a new Python package SCDD (for “Statistical Classification of
Discrete Data”) being developed in Research Institute for Applied Problems
of Mathematics and Informatics of Belarusian State University. This package
supports three types of discrete data: multivariate data, time series and random
fields. For these types of discrete data the new developed by authors and
known in the literature Markov models are implemented for statistical parameter
estimation and data classification.

Keywords: statistical classification; discrete data; Python; Markov model.

1 Structure of SCDD Package

Below we give a list of modules of a Python package SCDD (for “Statistical
Classification of Discrete Data”) and the implemented probabilistic models. Each
module works with some type of discrete data x and classify it based on some
m-parametric probabilistic model M(θ) (one of a models pool of this module) with
parameter θ ∈ Rm. At the training stage an input training data is used for parameter
estimation:

(x(Train),M) 7→ θ̂.

At the classification stage an input data is being classified based on model fitted on
the training stage:

(x(Classify),M(θ̂)) 7→ Class.

Without loss of generality we assume that discrete data x of each type is represented
by some indexed vectors (matrices, fields, etc.) x = (xi)i∈I with some finite index set
I and nonnegative integer entries xi ∈ N0.

1.1 Module “Visualization and preprocessing”

This module provides standard sample statistical data characteristics and their
visualization to help user chose a suitable kind of probabilistic model for statistical
classification:

• mutual covariances of variables;

• spectral characteristics;

• entropic functionals.
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1.2 Module “Multivariate discrete data”

This module works with samples of i.i.d. multivariate discrete vectors xt = (xt,i)
d
i=1 ∈

Nd
0 ∼ M(θ), t ∈ {1, . . . , T}, where M(θ) is some multivariate discrete distribution

family. The following standard families are implemented in the module:

• Multinomial;

• Negative Multinomial;

• Poisson;

• Hypergeometric;

• Logarithmic;

• Ewens;

• Based on power series.

1.3 Module “Univariate discrete time series”

This module works with univariate discrete time series xt ∈ N0, t ∈ {1, . . . , T},
distributed according to some parsimonious high-order Markov model M(θ). The
following new developed by authors and known in the literature Markov models are
implemented in the module:

• Fully connected Markov chain MC(s);

• Markov chain of order s with r partial connections MC(s, r) [1];

• Raftery MTD model [2];

• Binary (MCSS [3], CNAR [4], MC);

• Conditionally binomial CNAR [5] (including outliers [6]);

• Conditionally semibinomial CNAR [7];

• Conditionally Poisson [8].

1.4 Module “Multivariate discrete time series”

This module works with multivariate discrete time series xt ∈ Nd
0, t ∈ {1, . . . , T}. The

following models are implemented in the module:

• Conditionally Multinomial (CNAR [9]);

• Conditionally Negative Multinomial (CNAR [9]);

• Multinomial with conditionally independent Binomial components (CNAR [9]);
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• Multinomial with conditionally independent Poisson components (CNAR);

• Multinomial binary with the standard base functions (MCSS [3]);

• Multinomial discrete with the standard base functions (MCSS [3]);

• Multinomial binary based on artificial neural networks (two-layer CNAR [10;11]).

1.5 Module “Discrete random fields”

This module works with discrete random fields xt ∈ N0, t ∈ V , defined on some graph
G = (V,E) with vertices set V and edge set E. The following Markov Random Field
(MRF) models are implemented in the module:

• Ising model on standard lattices (square, hexagonal, triangle);

• based on MRF on spanning tree of a graph (standard lattices and spanning trees);

• based on MRF on spanning tree of a graph (arbitrary user defined graph and
spanning tree).

2 Implemented probabilistic models and their

features

Here we briefly describe the used probabilistic models and their features.
The new recently developed by authors MCSS models [3] and CNAR models [4–7;9]

for discrete time series provide flexible tools for data adaptive model extension with
fast parameter statistical re-estimation algorithms.

The models of MRFs on graphs based on MRFs on graph’s spanning trees allow to
build a wide class of Markov models with explicit analytic expressions for statistical
parameter estimation and to avoid a problem of exact solutions [12] for exponential
families of probability measures. The standard Ising models with known exact analytic
solutions are also implemented.
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The article is focused on a conditional optimization problem for uplift models
with two given target metrics. This problem arises if we want to simultaneously
maximize two metrics, for example, the customer happiness and the net profit.
We present a method which maximizes the average value of one metric while the
average value of another metric is fixed.
The difficulty of conditional optimization is that we need to estimate the average
metric value for a policy proposed by the uplift model. We cannot use the
predictions of the uplift model for this estimation. We present an effective
algorithm that estimates the average metric value for an arbitrary policy based
on the uplift model.

Keywords: uplift modeling; conditional optimization; model evaluation;
randomized experiment.

1 Introduction

Randomized experiments help people select an optimal treatment for the test
population. However, customers can show significant heterogeneity in response to
treatments. The problem of how to create the treatment policy, using the customer
chatacteristics, is called an uplift modelling.

Classical uplift models are mazimize a single target metric. Unfortunately, we
cannot limit ourselves with a single target metric. For example, we want to optimize
metrics that exhibit inverse trends. The problem can then be naturally formulated as
maximizing the average value of one metric while simultaneously fixing the average
value of the other.

In this article, we develop an approach to solve the problem of conditional
optimization in uplift modeling. We discuss how this approach performs on one of
T-Bank’s products and whether its assumptions are valid.

2 Conditional optimization

We use the mathematical formulation of uplift problem proposed in [1]. Let
(X,T, Y 1, Y 2) be a random element, where the random vector X ∈ X ⊂ Rd, d ∈ N, the
characterizes customer, the random integer T ∈ {0, . . . , K} indicates the treatment,
and the random variables Y 1, Y 2 ∈ R denote the values of target metrics.
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The measurable function h : X → {0, . . . , K} is called a policy. We denote by ν
the set of all policies. The key performance metric of an uplift model is the expected
value of the response if the policy h is used to assign the treatment,

EhY j := Ef j(X, h(X)), f j(x, t) = E
(
Y j | X = x, T = t

)
, j ∈ {1, 2}.

There is no analytic experession for the function f j, but we can build its approximation
f̃ j(x, t) ≈ f j(x, t), using machine learning algorithms. Set

h∗w(x) := arg max
t≤K

(
f 1(x, t) + wf 2(x, t)

)
, x ∈ X ,

where w > 0. The optimal expected response of Eh(Y 1 + wY 2) is achieved by the
policy h∗w.

Theorem 1. Let w > 0 be a fixed weight. Set Cw := Eh∗wY
2. Then the policy h∗w is a

solution of the conditional optimization problem

max
h∈ν

EhY 1, EhY 2 ≥ Cw.

We can use Theorem 1 to justify the following conditional optimization algorithm.

1. Train model f̃ j(x, t) ≈ f j(x, t) for each j ∈ {1, 2}.

2. Fix the boundary value C for the average value of the target metric Y 2.

3. Find h̃∗w(x) := arg maxt≤K(f̃ 1(x, t) + wf̃ 2(x, t)) for each w > 0.

4. Estimate C̃w := Eh̃∗wY
2.

5. Find w0 > 0 such that C̃w0 ≈ C.

The policy h̃∗w0
is the desired solution of the conditional optimization problem.

3 Estimate of the average value

Assume that we have the sample

(Xi, Ti, Y
1
i , Y

2
i ), i ∈ {1, . . . , N},

of independent random elements, whose distribution coincides with the distribution of
the random element (X,T, Y 1, Y 2). We can use an uplift model to estimate EhY 2:

EhY 2 ≈
N∑
i=1

f̃ 2(Xi, h(Xi))

N
.

However, this estimate depends on the quality of the uplift model. Most likely, we get
a biased estimate.

We need the following assumption to build the unibiased estimate.
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Assumption 1. For any t ∈ {0, . . . , K}

P(T = t | X) = pt

a.s., where pt > 0, p0 + . . .+ pK = 1.

In a randomized experiment Assumption 1 holds.

Theorem 2 ( [1, Theorem 2.1]). Let the random element (X,T ) satisfies Assumption
1. We fix h ∈ ν, j ∈ {1, 2}. Set

Zj
h;i := Y j

i

I{h(Xi) = Ti}
ph(Xi)

, i ∈ N.

Then

Z
j

h =
N∑
i=1

Zj
h;i

N

is an unbiased and consistent estimate of EhY j.

Theorem 2 allows us to construct the estimate of EhY 2 in step 4 of the above
algorithm. However, we can use this algorithm to estimate EhY 1. It allows us to
evaluate the quality of the policy h̃∗w.

4 Algorithm application

We applied the algorithm for optimization to one of T-Bank’s products. This product
is aimed at increasing a customer engagement in the ecosystem, but the bank spends
a lot of money on this product. Therefore, we want to increase customer happiness,
keeping the money to be spent on the product.

We applied the algorithm to the data from an earlier experiment, where K = 3,
N ∝ 106. The response Y 1 is the customer happiness, the response Y 2 is the income.
Since the experiment is randomized, Assumption 1 is fulfilled.

To evaluate
∆f j(x, t) := f j(x, t)− f j(x, 0),

we used the causal random forest [2] for each j ∈ {1, 2}, t ∈ {1, . . . , K}. We validated
the quality of the pairwise models ∆f̃ j(x, t) ≈ ∆f j(x, t) using the AUUC [3].

Note that the curve based on the uplift model is higher than the curve for constant
policies. We developed several policies for different exchanges between customer
happiness and our income.

We conducted two experiments to test the quality of the choosen policies. The
experimental results confirmed the applicability of the developed algorithm. We have
managed to maximize one of the metrics by controlling the average of the other metric.
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5 Discussion

In this article, we have developed and applied approach of conditional optimization in
uplift modeling. The algorithm was theoretically validated and applied to a real-world
business problem.

We want to continue developing the methodology. Firstly, the approach relies
on Assumption 1. We want to solve the problem of conditional optimization with
heterogeneous data or data from several experiments. Secondly, the approach is only
effective when the number of treatments is small. We want to extend the approach to
the case of multidimensional or continuous treatment. Thirdly, the approach produces
a constant-time treatment. We want to develop a methodology that allows us to
retrain and issue a time-varying policy. These improvements will allow us to expand
an algorithm to more cases.
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We consider a new class Q of distribution functions F that have the property
of rational-infinite divisibility: there exist some infinitely divisible distribution
functions F1 and F2 such that F1 = F ∗ F2. Characteristic functions of
such probability laws admit the Lévy-type representation with “signed spectral
measures”. We propose criteria for a distribution function F to belong to the
class Q for the unexplored case, where F may have a continuous singular part.

Keywords: infinite divisibility; rational-infinite divisibility; quasi-infinite
divisibility; the Lévy-type representation; continuous singular part.

1 Introduction

Let I denote the class of all infinitely divisible distribution functions on the real
line. This class is naturally extended by the following way. We call a distribution
function F rational-infinitely divisible if there exist some infinitely divisible distribution
functions F1 and F2 such that F1 = F ∗ F2. In terms of characteristic functions, this
definition is equivalent to the formula f(t) = f1(t)/f2(t), t ∈ R, for the characteristic
function f of F , where f1 and f2 are the characteristic functions of some infinitely
divisible distribution functions F1 and F2, respectively. We denote by Q the class of
all rational-infinitely divisible distribution functions. Since F2 may be degenerate, it
is seen that I ⊂ Q. The class Q coincides with the class of quasi-infinitely divisible
distribution functions, in which the characteristic function f of any representative F
admits the Lévy-type representation:

f(t) = exp

{
itγ − σ2t2

2
+

∫
R\{0}

(
eitx − 1− it sin(x)

)
dL(x)

}
, t ∈ R,

with some shift parameter γ ∈ R, the Gaussian variance σ2 > 0, and the Lévy-type
spectral function L : R \ {0} → R, which has a bounded total variation on R \ Oδ for
every δ > 0, where Oδ := (−δ, 0) ∪ (0, δ), and, in general, it is non-monototic on the
intervals (−∞, 0) and (0,+∞). The function L also satisfies the conditions L(±∞) = 0
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and ∫
Oδ

x2d|L|(x) <∞ for any δ > 0.

The function L is assumed to be right-continuous at every point of the real line. It is
important to note that the characteristic triplet (γ, σ2, L) is uniquely determined by f
and hence by F .

The classQ and its multivariate analog are actively studied now (see [2] and [6]) and
they find some interesting applications in probability limit and compactness theorems
(see [1] and [5]), and in other areas. This class is seen to be rather wide. It is interesting
and important to obtain criteria for belonging to it. There are finished results in [1;6]
for the discrete distributions and in [3; 4] for the mixtures of discrete and absolutely
continuous laws. In this note, we propose a criterion, which generalizes these results
for the case, when F may have a continuous singular part.

2 Results

Let F be an arbitrary distribution function on the real line. According to the Lebesgue
decomposition theorem, F admits the representation:

F (x) = cdFd(x) + caFa(x) + csFs(x), x ∈ R, (1)

where Fd, Fa, and Fs are discrete, absolutely continuous and continuous singular
distribution functions, respectively. Here the coefficients ca, ca, and cs are non-negative
constants such that cd + ca + cs = 1. Let f be the characteristic function of F . It is
represented in the similar way:

f(t) = cdfd(t) + cafa(t) + csfs(t), t ∈ R,

where fd, fa, and fs are the characteristic functions corresponding to Fd, Fa, and Fs,
respectively.

We consider only the case, when F has a non-zero discrete part, i.e. cd > 0 in (1).
Let

Fd(x) =
∑
k∈N0:
xk6x

pk, x ∈ R,

where xk are distinct reals associated with weights pk > 0, k ∈ N0,
∑∞

k=0 pk = 1. We
define the support of the distribution corresponding to Fd,

X := {xk : pk > 0, k ∈ N0},

and the set of all finite Z-linear combinations of elements from the set X ,

〈X 〉 :=

{ m∑
k=1

akzk : ak ∈ Z, zk ∈ X , m ∈ N
}
.
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Let us formulate the main result. For convenience, we preliminarily select the
following property of distributions. Let µd := inft∈R |fd(t)|. We say that a distribution
function F has the dominated continuous singular part if cs < cdµd for the case µd > 0
and if cs = 0 for the case µd = 0.

Theorem 1. Suppose that F has decomposition (1) with some cd > 0, ca > 0, cs > 0,
and F has the dominated continuous singular part. Then the following statements are
equivalent:

(i) F ∈ Q,

(ii) inft∈R |f(t)| > 0,

(iii) f(t) 6= 0 for any t ∈ R, and inft∈R |fd(t)| > 0.

If one of the conditions is satisfied, and hence all, then f admits the following
representation

f(t) = exp

{
itγ0 +

∑
u∈〈X〉\{0}

λu
(
eitu − 1

)
+

+

∫
R\{0}

(eitx − 1)

(
va(x) + sign(x)

ma · e−|x|

|x|

)
dx

+

∫
R\{0}

(eitx − 1) dW (x)

}
, t ∈ R.

Here γ0 ∈ 〈X〉, λu ∈ R for all u ∈ 〈X〉 \ {0}, and
∑

u∈〈X〉\{0} |λu| < ∞. Next, the

function va : R 7→ R satisfies
∫
R |va(x)|dx <∞, and, in the case ca = 0, va is identically

0; the constant ma is an integer and ma = 0 for the case ca = 0. Next, the function
W : R→ R has a bounded total variation and it is always continuous on R. If cs = 0
then W is identically 0. If cs 6= 0 then W is not absolutely continuous on R, i.e. it
always contains some continuous singular part. In addition, if all the functions F ∗ks ,
k ∈ N, are continuous singular, then the function W is (pure ) continuous singular.

Using Theorem 1, it is easy to construct a lot of particular examples of F ∈ Q with
non-zero continuous singular parts. For instance,

F (x) := cd10(x) + caFa(x) + csFs(x), x ∈ R,

with cd > cs > 0, ca > 0, and cd + ca + cs = 1. Here 10 denotes the distribution
function of the degenerate law concentrated at the point x = 0. Let Fs be an
arbitrary continuous singular function, but Fa be an absolutely continuous distribution
function, whose characteristic function fa is real and non-negative (for instance, fa is
a Pólya-type characteristic function or fa is corresponded to a symmetric continuous
stable distribution). Then it is not difficult to check (ii) and conclude that F ∈ Q.

It should be noted that the condition of the dominated singular part can not be
simply omitted and, moreover, it cannot be extended to the case cs = cdµd with µd > 0
without certain additional assumptions.
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We show that the specific discretization of data doesn’t change the limit
distribution of a wide class of statistics. More specifically, we group the data in
o(
√
n) bundles, where n is the sample size. We show that the limit distribution

of a wide class of functionals of the empirical cumulative distribution function
remains the same after discretization.

Keywords: discretization; asymptotical statistical tests; Hadamard
differentiability; empirical process.

1 Introduction

Let X1, . . . , Xn ∈ R be a sample of one-dimensional random variables.
Nowadays statisticians often work with big data. Many statistical tests are based

on quite slow algorithms (O(n2) and more operations). As an example one can consider
the adaptive chi-square test, proposed in [1] or MMD test (see [2]). This test is very
slow but at the same time very powerful.

That is why one of the most important problems is to decrease the sample size
without significant loss of power.

We propose a natural approach for an i.i.d. one-dimensional sample – let group
the adjacent observations and construct a sample of the size k = k(n). It’s easy to
see that for k(n)/

√
n → +∞, n → ∞, the weak limit of the empirical process is

still the Brownian bridge. Therefore, discretization doesn’t change the asymptotical
distribution for a wide class of test statistics.

2 Results

Significant part of asymptotic statistics is based on convergence theorems for empirical
processes, particularly on the fact that

√
n(f(X)−EFf(X)) converges in distribution

to a tight gaussian process Yf for different classes f ∈ F (see [3]). The multiplier
√
n

gives an idea to discretize data by replacing o(
√
n) adjacent elements with one value,

representing the whole group. In this case the functional limit theorems still holds.
Let F̂ be the empirical cumulative distribution function of the sample X1, . . . , Xn

and X(i), i ≤ n, – the order statistics of the sample.
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We fix some k and compute l = [n/k], r = n− kl. Let

Yi =

{
MED

(
X((i−1)(l+1)+j), j ≤ l + 1

)
, i ≤ r,

MED
(
X(r+(i−1)l+j), j ≤ l

)
, i ∈ (r, k).

(1)

Let
(Z1, Z2, . . . , Zn) = (Y1, Y1, . . . , Y1, Y2, Y2, . . . , Y2, . . . , Yk, Yk, . . . , Yk),

where Y1, . . . , Yr are repeated l + 1 times and Yr+1, . . . , Yk are repeated l times.

Definition 1. The sample (Z1, Z2, . . . , Zn) is called the Discretized sample.

Let F̂ (k) be the empirical cumulative distribution function of the Discretized sample.
We consider the class F of Hadamard differentiable functionals (and some other

classes too) and show that f(F̂ (k)) has the same asymptotical distribution as f(F̂ ) for
f ∈ F .

We use the synthetic data to show (empirically) that our o(
√
n)-discretization

does not decrease the power of asymptotical statistical tests, does not change the
asymptotical distribution of tests statistics and significantly accelerates the work of
these tests. Our empirical experience propose to use O(n1/4)-discretization for the
sample size n ≈ 103–104 and O(n1/3)-discretization for n more than 106. In this case the
computational power decreases from O(nα) to O(n3α/4) and O(n2α/3) correspondingly.

In our report we will describe a number of applications of presented approach to
different statistical problems, show the results of computer modeling and discuss the
further development of the method.
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We study Gibbs distributions associated with the Toda chain. We consider
the following Hamiltonian defined on the phase space R2(m+l+1):

Hm,l =
l∑

j=−m

p2
j

2
+

l−1∑
k=−m

eqk+1−qk .

It is well known chat the discrete Toda chain is one of classical completely
integrable models. We prove that for fixed values of parameters β and µ the
limit Gibbs distribution defined by Hamiltonian H there exists. We study the
probability properties of limit Gibbs distribution.

Keywords: Gibbs distribution; Toda chain; completely integrable; Lax pair.

1 Introduction

The main goal of this work is to study the limit Gibbs distribution of Toda Chain and
their probability properties.

The Toda chain (see [5]) is a model consisting of a chain of particles
with nearest-neighbor interactions, described by the Hamiltonian Hm,l and the
corresponding equations of motion:

dqk
dt

=
∂Hm,l

∂pk
= pk, −m ≤ k ≤ l,

dpj
dt

= −∂Hm,l

∂qj
= −eqj−qj−1 + eqj+1−qj , −m ≤ j ≤ l.

Here, qj(t) denotes the displacement of the j-th particle from its equilibrium position,
and pj(t) is its momentum (assuming unit mass, i.e., m = 1).

Let us introduce new variables:

aj = −pj
2
, −m ≤ j ≤ l,

bk =
1

2
e
qk+1−qk

2 , −m ≤ k < l,

which are called the Flaschka variables.
The Hamiltonian system is equivalent to the matrix equation

L̇ = [L,A] := AL− LA,
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where

L =


a1 b1 0 · · · 0

b1 a2 b2
. . .

...

0 b2 a3
. . . 0

...
. . . . . . . . . bn−1

0 · · · 0 bn−1 an

 , A =


0 b1 0 · · · 0

−b1 0 b2
. . .

...

0 −b2 0
. . . 0

...
. . . . . . . . . bn−1

0 · · · 0 −bn−1 0

 .

It is well known that the functions Fk = TrLk, for k = 1, . . . ,m + l + 1, are the first
integrals of the Toda chain; that is, each Fk is a constant of motion:

Fk = const.

It is clear that

F1 = TrL =
l∑

j=−m

aj = −1

2

n∑
j=1

pj,

F2 = TrL2 =
n∑
j=1

a2
j + 2

n−1∑
j=1

b2
j =

1

4

n∑
j=1

p2
j +

1

2

n−1∑
j=1

eqj+1−qj ,

F3 = TrL3 = −1

8

n∑
j=1

p3
j +

3

16

n−1∑
j=1

(pj + pj+1)eqj+1−qj ,

F4 = TrL4 = =
1

16

n∑
j=1

p4
j +

n−1∑
j=1

(
1

4
(p2
j + p2

j+1) +
1

4
pjpj+1

)
eqj+1−qj

+
1

8

n−1∑
j=1

e2(qj+1−qj) +
1

4

n−2∑
j=1

eqj+1−qjeqj+2−qj+1 .

It is well known that any linear combination of the first integrals F1, F2, F3, and F4 is
also a first integral. In what follows, we are particularly interested in studying linear
combinations of the form

H̃m,l = F4 + J3 · F3 + J2 · F2 + J1 · F1,

where the parameters J1, J2, J3 ∈ R. In the last expression, if m and l tend to infinity,
we obtain an infinite-dimensional Hamiltonian H̃.

2 Main part

The configuration model with Hamiltonian H̃ is defined on countable, locally finite
subsets X ⊂ R1, where for each q ∈ X, its right and left ”neighbors” qr and ql,
respectively, are defined. It is not required that ql < q < qr; however, it is required
that:
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(i) (ql)r = q = (qr)l;
(ii) the natural graph with edges q → ql and q → qr is connected;
(iii) if an ordering q < qr is introduced on X, then

lim
m→∞

q−m = +∞, lim
l→∞

ql = −∞.

We denote the space of all configurations X by Ω. Consider the mapping τ : X →
R2, given by τ(q) = (q, p) ∈ R2 for any q ∈ X. A point in the phase space is defined
as the set Y = τ(X), together with the graph induced by X.

The phase space is defined as the set

M =
⋃
X∈Ω

⋃
Y,

We need the following definitions.
Definition 1. The conditional Gibbs distribution at inverse temperature β > 0,

given the boundary conditions Y l and Y r, is a probability distribution on the set
M(Y l, Y r), such that for k ≥ 0, its restriction to Mk(Y

l, Y r) has the density

Pm,l(q−m, p−m, . . . , ql, pl) = Ξ−1
β,µ(s) · exp

{
−β
(
H̃m+2,l+2(s) + µk

)}
, (1)

where (q−m−1, p−m−1) = z1, (q−m−2, p−m−2) = zl1, (ql+1, pl+1) = z2, and (ql+2, pl+2) = zr2.
Here, m and l denote the numbers of particles to the left and right of the zero particle,
respectively, so that m + l + 1 = k. The term Ξβ,µ(s) is the normalizing factor
(partition function).

Definition 2. The limiting Gibbs distribution νβ,µ, for β > 0 and µ ∈ R, is a
probability measure on γ such that, for any set

M(∆−2,∆−1,∆0,∆1,∆2),

its induced conditional distribution on the σ-subalgebra

γt(∆−2,∆−1,∆0,∆1,∆2)

coincides almost surely (a.s.) with the distribution defined by (1).

Now we formulate our main results.
Theorem 1. Let the parameters β > 0 and µ ∈ R satisfy the following condition

eβµ
∫

exp{−βp4} dp
∫

exp{−β(e2y − y)} dy < 1.

Then, for the probability measures with density (1), as s→ +∞, there exists at least
one limitic Gibbs measure νβ,µ on the phase space M .
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We define the sequence (zk)k∈Z by

zk := qk+1 − qk.

Let
∑

denote the symbolic space, defined as:∑
:=
{
y = (. . . , yi−1, yi, yi+1, . . . ) : yi ∈ R, i ∈ Z

}
=: RZ.

Let τ : Σ→ Σ be the shift map, defined as

(τ(y))i = yi+1, i ∈ Z.

For any lattice interval Λ := [m, k] ⊂ Z, we define a cylinder set, or simply a
cylinder, as follows:

C[m, k] :=
{
y : y = (. . . , yi−1, yi, yi+1, . . . ), yi ∈ [ai, bi], m ≤ i ≤ k

}
,

where B(R) is the Borel σ-algebra of subsets of the real line R.
Let B(RZ) denote the smallest σ-algebra containing all possible cylinder sets.
Theorem 2. For any cylinder C defined on an lattice interval Λ ⊂ Z hold the

following inequalities:
c1θ
|Λ|
1 ≤ νβ,µ(C) ≤ c2θ

|Λ|
2

where c1, c2 > 0 and θ1, θ2 ∈ (0, 1) only depend on the Gibbs measure νβ,µ.

Theorem 3. C1 ⊂ C be cylinders defined on intervals Λ1, Λ; then

c1θ
|Λ1|−|Λ|
1 ≤

νβ,µ(C1)

νβ,µ(C)
≤ c2θ

|Λ1|−|Λ|
2 .

Remark 1. Analogues results are true for other integrals of motion of Toda Chain.
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Tensor modifications of singular spectrum analysis for signal extraction
and frequency estimation problems in a noisy sum of exponentially modulated
sinusoids are reviewed. Modifications using Higher-Order SVD are considered.
Numerical comparisons are carried out. It is shown numerically that for, the
signal extraction problem, tensor methods generally perform worse than matrix
methods for a single-channel series, but can outperform multi-channel SSA for
a series system. For frequency estimation, tensor modifications are generally
advantageous.
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1 Introduction

Singular spectrum analysis (SSA) is one of the methods used for time series analysis [2],
in which the original time series is transformed into a matrix, called the trajectory
matrix, using a given window length L. The singular value decomposition (SVD)
of this matrix is then analyzed. When the objective is to estimate the signal and
its properties from an observed noisy series, the first r components of the SVD are
considered, where r is the rank of the signal trajectory matrix. Based on the selected
components, the signal estimation is constructed. A distinctive feature of the method
is that it does not require the specification of a signal model. However, SSA can also
handle a parametric signal model in the form of a sum of products of polynomials,
exponentials and sinusoids. The frequency estimation problem plays a special role.
The ESPRIT method uses the estimation of the signal subspace based on the r leading
left singular vectors of the trajectory matrix SVD to estimate the frequencies present
in the signal. The least squares (LS) version of ESPRIT [5] is also known as Hankel
SVD (HSVD), and the total least squares (TLS) version is known as HTLS [7].

A number of works propose tensor modifications of the SSA and ESPRIT methods,
where the original series is transformed into a tensor, usually of 3rd order, instead of a
matrix [1; 3; 6]. One of the common variants of tensor decompositions is Higher-Order
SVD (HO-SVD), which generalizes the matrix SVD.

This work aims to compare the performance of matrix and tensor modifications of
SSA in solving signal extraction and frequency estimation problems. We will consider
the tensor modifications proposed in [3] and [4], which have been adapted for signal
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extraction.

2 Methods description

2.1 Tensor SSA algorithm layout for signal extraction

The general structure of tensor SSA algorithms based on HO-SVD is as follows (Basic
SSA is a special case). Let X be the observed object. The tensor dimensions I, L
and K are considered as the window length; some of these dimensions are expressed in
terms of the others, or are fixed. The parameters of the algorithm are the values R1,
R2 and R3. These are often chosen to be equal to r, but not always.

1. Embedding to the trajectory tensor X = T (X).

2. Tensor decomposition X =
∑I

i=1

∑J
l=1

∑K
k=1ZilkU

(1)
i ◦ U

(2)
l ◦ U

(3)
k .

3. Grouping X̂ =
∑R1

i=1

∑R2

l=1

∑R3

k=1ZilkU
(1)
i ◦ U

(2)
l ◦ U

(3)
k .

4. Obtaining from X̂ the signal estimate X̂ based on the structure of the trajectory
tensor and the operation that is inversed to embedding.

We will further consider two types of input object: single-channel and multi-channel
time series.

2.2 Trajectory tensors

Let X = (x1, . . . , xN) be a single-channel time series of length N , xn ∈ C.

Definition 1. The tensor embedding operator for a single-channel time series
with window lengths I and L (then K = N − I − L + 2) such that
1 < I, L < N, I + L < N + 1 is a mapping TI,L that transfers the series X into the
tensor X ∈ CI×L×K as follows: Xilk = xi+l+k−2, where i ∈ 1 : I, l ∈ 1 : L, k ∈ 1 : K.

Let X =
(
X(1), . . . ,X(P )

)
be a multi-channel time series consisting of P single-channel

series, also called channels.

Definition 2. The tensor embedding operator for a multi-channel time series with
window length L (that is, I = P , L, K = N − L + 1) such that 1 < L < N is a
mapping TL that translates the P -channel time-series X into the tensor X ∈ CP×L×K

as follows Xplk = x
(p)
l+k−1, where p ∈ 1 : P , l ∈ 1 : L, k ∈ 1 : K.

2.3 Algorithm for signal parameters estimation

Consider the P -channel time series (including the single-channel case P = 1) with
elements

x(p)
n =

R∑
r=1

a(p)
r eαrne

i
(

2πωrn+ϕ
(p)
r

)
,
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where the model parameters are the amplitudes a
(p)
r ∈ C\{0}, phases ϕ

(p)
r ∈ [0, 2π), the

frequencies ωr ∈ [0, 1/2], and the damping factors αr ∈ R. The HO-ESPRIT algorithm
that estimates the frequencies and damping factors of a time series is defined as follows.

After the embedding step the matrix U = Ud =
[
U

(d)
1 : U

(d)
2 : . . . : U

(d)
Rd

]
for d ∈ {1, 2, 3}

is constructed and the following matrix equation

U↑ = U↓Z

is solved with respect to matrix Z, where the up and down arrows placed behind the
matrix U stand for deleting its first and last rows accordingly. TheR largest eigenvalues
of the matrix Z are considered to be the estimates of the poles λr = eαr+2πiωr , from
which the parameters αr and ωr can be obtained.

2.4 Dstack modifications

In the paper [4], to improve the speed of the method, it is proposed to transform a
single-channel series into a multi-channel series before applying the tensor modification:
x

(d)
m = x(m−1)D+d, where m ∈ 1 : (N/D). In that paper only the ESPRIT modification

called HTLSDstack is considered, but we will apply this time series transformation for
the signal estimation problem as well, and will call the resulting method SSADstack.
Tensor modifications are constructed as for a multi-channel series.

3 Comparison of tensor and matrix methods

All numerical comparisons are made using time series that are expressed as sums of
sinusoids.

The following methods were compared for single channel time series and signal
extraction problem: SSA, HO-SSA, SSADstack, HO-SSADstack with R1 = r and
HO-SSADstack with R1 = 1. It has been shown that, in most cases, the SSA method
significantly outperforms other methods in terms of accuracy. When the SSA method
is less accurate, the difference is negligible and only occurs for a very narrow range of
parameters. This minor disadvantage is therefore not a practical consideration. Of the
Dstack methods, SSADstack and HO-SSADstack are the most accurate, with a small
difference in accuracy when R1 = r.

For single-channel time series and frequency estimation problem, a signal in the form
of two sinusoids with close frequencies was considered. The ESPRIT, HO-ESPRIT,
HTLSDstack, HO-HTLSDstack with R1 = r and HO-HTLSDstack with R1 = 1
methods were compared. It was found that ESPRIT performs more accurately at
a low noise level. However, at a medium or high noise level, HO-ESPRIT with
optimal parameter selection becomes more accurate. Furthermore, HO-HTLSDstack
with R1 = 1 outperforms all methods.

For multi-channel time series, it has been demonstrated that, when all channels are
expressed as a sum of sinusoids with equal frequencies, tensor modifications provide
more accurate results for both signal extraction and frequency estimation.
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4 Conclusions

Numerical comparisons revealed the varying effects of the HO-SVD tensor modifications
on different time series problems. For signal extraction from a single-channel time
series, the basic matrix method is certainly more accurate. However, for multi-channel
time series with an equal set of frequencies across the channels, and for frequency
estimation problems, the tensor methods can offer improved accuracy.
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In this paper, we consider the problem of quantitative estimation in the
interval statement of: a) uncertainty of the results of indirect observations; b) true
value of a physical quantity. It is known, that in the case of indirect measurements
with more than two input parameters, statistical processing of observation results
in a probabilistic statement is possible only by statistical modeling. Estimation
of the uncertainty value of the result of indirect measurements is performed in an
interval statement using the example of the simplest three-parameter problem.
It is shown that the idea of representing the true value of a physical quantity
using an interval number to be promising. Measurement models are described
for two types of physical quantity: the rod length and the weight of the load,
and quantitative estimates of the width of the intervals of their true values are
performed.

Keywords: physical quantity; indirect measurements; uncertainty of the
measurement result; true value of the quantity; interval statement.

1 Introduction

At the beginning of the twentieth century, thanks to the efforts of many researchers in
the field of the processing of observation results, a classical approach was developed,
including the concepts of the observation result, the true value of a quantity and the
error, which was differentiated into random and systematic. Within the framework of
probability theory, a powerful mathematical approach was developed that allowed us
to evaluate various statistical parameters of samples of measured values of a quantity
obtained during direct measurements.

For indirect measurements, this scheme worked much worse, since, as is known,
the problem of finding statistical moments of a quantity that is an analytic function of
two or more input parameters with known distribution laws generally has no analytical
solution. This problem can be solved using statistical modeling (Monte Carlo) methods
with considerable computational resources.

The basic idea of the approach, the difference between the true value and the
measured value of a quantity, seemed perfectly natural and suitable for everyone.
However, at the end of the seventies of the last century, British metrologists doubted
the very existence of the true value of a quantity (in the classical point formulation):
how can one operate (in the mathematical sense) with a value that, for a number of
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circumstances, will never be known?
In the end, these ideas were approved by all the leading metrological organizations of

the world, which resulted in the expulsion of the concept of error from the international
metrological circulation and its replacement by the new concept of measurement
uncertainty, understood as an interval that can be assigned to the value of the measured
quantity on the basis of all available information. The first version [1] of the GUM is
“Guidelines for expressing Measurement Uncertainty”; it was approved (currently the
eth modified edition [2] is in force).

We would like to point out a number of works [3–5] (not exhaustive, of course)
that have questioned the main provisions of the probabilistic paradigm for processing
observational results. Meanwhile, this paradigm, which in the 60s of the last century
seemed unshakable, as if cast in bronze, on the periphery of scientific research (if
the classical probabilistic statement is still considered mainstream), alternatives were
developed, one of which was the interval approach.

As its forerunner we can consider the Soviet mathematician Vladimir Modestovich
Bradis (known to the older generation from the tables of his name), who developed
interval ideas in his works at the beginning of the last century, [6]. Interval analysis was
further developed in the work of Rosalind Young [7], (1931), and in the works of many
researchers from the Soviet Union, the United States, Great Britain, Germany, Poland
and Japan, [6]. The work of academician Kantorovich [8], (1962), which, among other
things, proposed the use of two-way estimates in processing the results of observations,
had a serious impact on the research of Soviet mathematicians in the field of interval
analysis.

In recent decades, research in the field of interval data statistics has continued and
turned out to be very successful; some of its results can be found in the dissertation
[9] and two collective monographs [6; 10]. Particularly important is the first book,
published by well-known Russian experts in 2024.

2 Statistics of indirect measurement results

Consider the simplest three-parameter problem of finding the frequency of oscillation
of a physical pendulum on a free suspension consisting of two point masses m1 and
m2, kg for kilograms, connected by a rod of length l, m for meters (Figure 1). Model
assumptions: the rod is weightless and absolutely rigid, and the rod can move on a
horizontal surface without friction.

In the case of small oscillations (angle α� 1, rad), ignoring the terms of the second
order of smallness, the circular frequency ω, Hz, of the pendulum oscillations can be
found, [11], by the relation

ω =

√(
1 +

m2

m1

)
g

l
. (1)

In the limit, for m2/m1 → 0 (1), equation (1) becomes the classical equation of a
mathematical pendulum.
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Linear frequency ν, Hz, of the pendulum oscillations

ν =
1

2π

√(
1 +

m2

m1

)
g

l
. (2)

Fig. 1. Pendulum

Let us assume that the values of all three input parameters of equation (2) are
obtained on the basis of several direct measurements: the mass of the loads is
determined using electronic scales of accuracy class 2 weighings each), the length of
the rod is determined using a metal ruler 1000 mm long with a graduation of 1 mm
(seven measurements), Table 1. The limits of the absolute error ∆ of the measurement
results for scales are calculated taking into account the accuracy class of the equipment,
when measuring the length ∆ is assumed to be equal to half of the scale interval of the
measuring instrument.

Let us present the measurement results of the three input parameters of the problem
in the interval formulation

For the purpose of visualization, the intervals will be displayed graphically (see
Figure 2), with the example of the mass of the load m1 (monographs [6] refer to such
figures as scattering diagrams). The mean value is indicated by the dotted line.

In accordance with the terminology outlined in [6], it can be concluded that all three
samples (m1, m2, l) are covering samples. This means that most of the experimental
data contained in them in the form of interval numbers contains the true value of the
measured values. The interval shells of the interval samples of the measured values of
the input parameters of the problem are as follows:

a) mass of the first load: m1 ∈ [2.4549, 2.6531] kg;
b) mass of the first load: m2 ∈ [0.0189, 0.0227] kg;
c) the rod lengths: l ∈ [0.6514, 0.6546] m.
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Table 1
Measurement results

Load weight m1 ±∆ kg Load weight m2 ±∆, kg Rod length l ±∆, m
2, 582± 0, 051 0, 0212± 0, 0004 0, 6540± 0, 0005
2, 579± 0, 052 0, 0212± 0, 0004 0, 6540± 0, 0005
2, 597± 0, 052 0, 0200± 0, 0004 0, 6540± 0, 0005
2, 577± 0, 052 0, 0203± 0, 0004 0, 6540± 0, 0005
2, 594± 0, 052 0, 0202± 0, 0004 0, 6520± 0, 0005
2, 518± 0, 050 0, 0198± 0, 0004 0, 6530± 0, 0005
2, 555± 0, 051 0, 0207± 0, 0004 0, 6530± 0, 0005
2, 551± 0, 051 0, 0194± 0, 0004
2, 505± 0, 050 0, 0222± 0, 0004
2, 564± 0, 051 0, 0199± 0, 0004
2, 523± 0, 050 0, 0201± 0, 0004
2, 601± 0, 052 0, 0211± 0, 0004
2, 531± 0, 051 0, 0201± 0, 0004
2, 573± 0, 051 0, 0199± 0, 0004

Table 2
Statistical parameters of loads and rods based on measurement results

Weight of load m1 kg Weight of load m2, kg Rod length l, m
Average value of SKO Average value of SKO Average value of SKO

2,561 0.031 0.0204 0.0008 0.6534 0.0005

The frequency, ν, of the pendulum oscillations in the interval statement can be
calculated from relation (2) by direct substitution of the values of the input parameters
into it. Interval calculations were conducted using the INTLab program [12], an interval
application (toolbox) within the MATLAB package. In this particular instance, it was
deemed unnecessary to implement preventive measures to mitigate widening of the
intervals. This is because each input parameter is only used once in the calculated
ratio. It is important to acknowledge that the aforementioned effect has historically
served as a deterrent, hindering the extensive use of interval statement in engineering
problems and interval calculations. Effective methods for its suppression have now
been developed.

The result of calculating the linear oscillation frequency of the pendulum in the
interval setting: ν ∈ [0.6183, 0.6205] Hz. This is an interval with an average value of
0.6194 Hz and a radius of 0.0011 Hz. Thus, the width of the interval that characterizes
the uncertainty value of the oscillation frequency was equal to 0.0022 Hz.

For the purpose of comparison, please refer to Table 4, which presents the results of
processing indirect measurement data obtained by three methods: statistical modeling,
linear approximation and interval statement.
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Table 3
Measurement results in interval representation

Weight of cargo Mass of the load Length of the rod
m1 ±∆, kg m2 ±∆, kg l ±∆, m

[2, 5309, 2, 6331] [0, 0207, 0, 0217] [0, 6535, 0, 6545]
[2, 5270, 2, 6311] [0, 0207, 0, 0217] [0, 6535, 0, 6545]
[2, 5449, 2, 6491] [0, 0195, 0, 0205] [0, 6535, 0, 6545]
[2, 5249, 2, 6291] [0, 0198, 0, 0208] [0, 6535, 0, 6545]
[2, 5419, 2, 6460] [0, 0197, 0, 0207] [0, 6515, 0, 6525]
[2, 4679, 2, 5681] [0, 0193, 0, 0203] [0, 6525, 0, 6535]
[2, 5040, 2, 6061] [0, 0202, 0, 0212] [0, 6525, 0, 6535]
[2, 5000, 2, 6021] [0, 0189, 0, 0199]
[2, 4549, 2, 5551] [0, 0217, 0, 0227]
[2, 5129, 2, 6151] [0, 0194, 0, 0204]
[2, 4729, 2, 5731] [0, 0196, 0, 0206]
[2, 5489, 2, 6531] [0, 0206, 0, 0216]
[2, 4799, 2, 5821] [0, 0196, 0, 0206]
[2, 5219, 2, 6241] [0, 0194, 0, 0204]

Fig. 2. Results of measuring the mass of the load m1 in an interval representation

Table 4
The estimate uncertainty of the results of indirect measurements (linear

frequency, Hz, oscillations of a physical pendulum)

Parameter Statistical Linear Interval
modeling approximation statement

Average value 0.6191 0.6195 0.6194
Interval nedefiniteness and [0.6186; 0.6196] [0.6188, 0.6202] [0.6183, 0.,6205]

Width of the 0.001 0.0014 0.0022
uncertainty interval

3 On true value of a physical quantity

The realization that the true value of any physical quantity cannot be determined
through measurement led to the introduction of the concept of its actual value by
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Russian metrology. This is defined as a value “found experimentally and so close to its
true value that it can be used instead of it for the problem being solved”.

In other words, even under ideal conditions (an impeccable measurement tool,
measurement procedure, and method of processing the results obtained) the value
obtained in the experiment will not coincide with the true value of the physical quantity.
The reason for this lies in the inherent uncertainty of the measurement model, its
attribute property, which consists in the fact that this model always idealizes and
simplifies the measured object to one degree or another.

In the point setting, this led to the conclusion that the true value of a physical
quantity in reality does not exist at all, since it is a kind of idealization. Meanwhile,
the interval paradigm allows us to consider the true value of a physical quantity as a
limited set of its actual point values, continuously filling its specific interval.

Let us demonstrate this thesis using the example of the input parameters of the
problem we considered above, i.e. the length of the rod and the mass of loads:

1) the measuring model of a rod is a cylinder with plane-parallel ends orthogonal
to its axis, made of steel. The length of such a cylinder is a point number.

Meanwhile, for any real rod (cylinder) it is evident that the end surfaces are not
perfectly flat, and are not parallel to each other or orthogonal to the axis. Furthermore,
the length of the object varies with temperature due to thermal expansion. The result
of the thought experiment would be that a set of point values would be continuously
generated, filling a certain interval. These values would be the result of measuring the
length of the rod under study at different points on the end surface and parallel to the
axis, at different temperatures. It is evident that the convex set is an interval number,
and thus should be considered as the true value of the length of the rod in question.

2) the measuring model for determining mass of a load is predicated on the
measurement of its weight. The process entails the measurement of its gravitational
mass, which, as has been repeatedly and rigorously demonstrated through experimental
means, is equivalent to its inertial mass with a high degree of precision. In the event
of the gravitational mass of a load being measured with absolute accuracy at differing
geographical locations and over a specified period of time, the resultant data would be
a set of point values. This is due to the fact that the result of measuring weight is
proportional to the acceleration of free fall, which, as is known, varies within certain
limits on the Earth surface, both in spatial and temporal terms. If the number of
these points being directed to infinity, the resulting set of point values of the load mass
becomes continuous, and its true value becomes an interval number.

Let us try to quantify the width of such an interval in a rough approximation.
Assuming that:
a) the coefficient of linear expansion of structural steel α ∈ [11, 12] is 10−6 K−1,

and the temperature range T ∈ [288, 301] K. Then the estimation of the width of the
interval of the true value of its length, due to the influence of temperature, will be as
follows:

∆T = lα∆T = 2.9 · 10−4m; (3)

b) the end surfaces of the rod are made with a tolerance of 0.8 microns, or 8 · 10−7
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m, and their parallelism: with a tolerance of 0.02 mm, or 2 · 10−5 m,
c) the dependence of the acceleration of free fall g, m/s2, on the geographical

latitude ϕ, ◦, point and height h, m, its location above sea level, can be calculated by
the empirical formula, [13]:

g = 9.780327 · (1 + 0.0053024 · sin2 ϕ− 0.0000058 · sin2 2ϕ)− 3.086 · 10−6 · h. (4)

Considering, that the southernmost city in Russia is Derbent (42◦ N., height 5 m),
and the northernmost city is Pevek (69◦ N., height 100 m); we get estimates of the
width (radius) of the intervals of the true values:

• of the rod length 3.1 · 10−4 m,

• of weight of the first load 0.0113 kg (taking into account the width of the interval
g ∈ [9.8035, 9.8252], equal to 0.0217 m/s2);

• the second load is 9.0 · 10−5 kg.

4 Conclusion

Notwithstanding its centuries-old history, the problem of statistical processing of the
results of observations remains relevant topic of research, and an alternative to the
classical probabilistic formulation of the problem is a new direction that has been
actively developed recently: the interval approach to the problem, or statistics of
interval data.

Within the interval paradigm, the imaginary problem of non-existence of the true
value of a physical quantity is removed.

Using the example of two physical quantities, the study demonstrated that their
true values form bounded continuous sets that can be represented as interval numbers.
In addition, quantitative estimates of the width of these intervals were performed.
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We study G-network consisting of multiline unreliable queuing systems (QS)
that receive impatient positive and negative requests and previously obtained
results on asymptotic analysis and research of similar networks. The impatience
of negative requests is manifested in the destruction of positive requests by them
not immediately, but after a random time, and the impatience of positive ones is
manifested in limiting the waiting time for the start of servicing positive requests,
after which it can move along the network systems or leave the network. Using
asymptotic analysis for a large but limited number of requests operating in the
network, expressions for the expected income of this network are found. A system
of difference-differential equations is obtained, which are satisfied by the expected
incomes of the network systems. Next, an equation in partial derivatives is
obtained for the income distribution density and a return to the expression for
expected incomes is carried out. In conclusion, the findings of the work are
presented and the prospects for studying queuing networks (QSN) using this
method are noted.

Keywords: G-network; asymptotic analysis; expected revenues.

1 Introduction

G-networks as a type of queueing networks (QN) were first introduced in the article
[1]. In the article [2] a G-network with unreliable service lines (SL) was studied in the
transient mode, in the case when the SL failed due to reasons not related to computer
viruses. In the article [3] G-network with impatient positive and negative customers is
studied in the transient regime. For negative customers, impatience is understood as
the ability to harm the QS not immediately, but after a certain period of time.

The first work on the asymptotic analysis of QN with a large but limited number
of requests functioning in the network is the work of Medvedev [4]. The method of
asymptotic analysis was first applied to G-networks in [5]. This method was not applied
to G-networks with impatient positive and negative requests, and for a G-network
with unreliable QS, an asymptotic analysis was performed in [6]. For a network with
unreliable LO and impatient requests, an asymptotic analysis was applied in [7]. This
work generalizes the results of [6; 7] for finding the expected income of network systems
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in the case where the network parameters depend on the network state and time, that
is, the results of [7] are generalized to the case of functioning of negative requests in
the network, and the results of [6] to the case where the network parameters depend
on the network state, time, as well as the impatience of positive and negative requests
and the unreliability of the LS.

2 Network description

We consider closed G-network [1] with n+1 queuing systems (QS) S0, . . . , Sn. In earch
QS consist mi line service, i ∈ {0, . . . , n}. In network moves K positive and K negative
customers.Independent Poisson flow of positive customers with rate λ+

0i and Poisson
flow of negative customers with rate λ−0i arrive to QS Si from outside (system S0),
i ∈ {1, . . . , n}. All Suppose S0 handles are reliable, and in other systems S1, . . . , Sn lines
can be damaged. The servicing time for QS customers has an exponential distribution
with a parameter µi(di, ki, li), where di is number undamaged lines in Si, ki, li are
numbers of positive and negative customers in i-th QS; the operation time of each line
without damage in this system has an exponential distribution with the parameter
βi(di, ki, li), i ∈ {1, . . . , n}. After the damage of the line immediately begins repairing
it, the repair time also has an exponential distribution with the parameter γi(di, ki, li),
i ∈ {1, . . . , n}. Positive customer being served in Si is moved to QS Sj with probability
p+
ij as a positive customer, and with probability p−ij as a negative customer, and with

probability pi0 = 1 −
∑n

j=1(p+
ij + p−ij), i, j ∈ {1, . . . , n}, come out from the network to

external environment. Each positive customer located in i-th QS, stay in the queue
random time according to a Poisson process of rate θi(di, ki, li), i ∈ {1, . . . , n}. By
the end this time, positive customer is moved to j-th QS as positive customers with
probability q+

ij , with probability q−ij as negative customers, and with probability qi0 =
1 −

∑n
i=1(q+

ij + q−ij), i ∈ {1, . . . , n}. Negative customer is arrived to QS increases
the length of the queue of negative customers for one, and requires no service. Each
negative customer, located in i-th QS, stay in the queue random time according to a
Poisson process of rate µ−i (di, ki, li), i ∈ {1, . . . , n}. By the end this time, negative
customer destroy one positive customer in the QS Si and leave the network. With used
asymptotic analysis finding expected revenues of this network.

Let (~d,~k,~l, t) = (d1, . . . , dn, k1, . . . , kn, l1, . . . ln, t). Same as [6] it can be shown that
network expected revenues satisfy different-difference equations (DDE) system:

dV (~d,~k,~l, t)

dt
= R +

n∑
i=1

[
λ+

0i(V (~d,~k + Ii,~l, t)− V (~d,~k,~l, t))+

+ u(ki)pi0

(
µi(di, ki − 1, li)V (~d,~k − Ii,~l, t)− µi(di, ki, li)V (~d,~k,~l, t)

)
+ γi(di + 1, ki, li)V (~d+ Ii, ~k,~l, t)− γi(di, ki, li)V (~d,~k,~l, t)

+ µ−i (di, ki − 1, li − 1)V (~d,~k − Ii,~l − Ii, t)− µ−i (di, ki, li))V (~d,~k,~l, t)

+ u(ki)qi0

(
θi(di, ki − 1, li)V (~d,~k − Ii,~l, t)− θi(di, ki, li)V (~d,~k,~l, t)

)
+ λ+

0ir0i − µi(di, ki − 1, li)u(ki)pi0Ri0 − θi(di, ki − 1, li)u(ki)qi0Hi0
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− giγi(di + 1, ki, li)− µ−i (di, ki − 1, li − 1)R−i

]

+
n∑

i,j=1

[
u(ki)p

+
ij

(
µi(di, ki − 1, li)V (~d,~k − Ii + Ij,~l, t)− µi(di, ki, li)V (~d,~k,~l, t)

)
+ u(ki)q

+
ij

(
θi(di, ki − 1, li)V (~d,~k − Ii + Ij,~l, t)− θi(di, ki, li)V (~d,~k,~l, t)

)
+ u(ki)p

−
ij

(
µi(di, ki − 1, li)V (~d,~k − Ii,~l + Ij, t)− µi(di, ki, li)V (~d,~k,~l, t)

)
+ u(ki)q

−
ij

(
θi(di, ki − 1, li)V (~d,~k − Ii,~l + Ij, t)− θi(di, ki, li)V (~d,~k,~l, t)

)
µi(di, ki − 1, li)u(ki)p

+
ijR

+
ij + θi(di, ki − 1, li)u(ki)q

+
ijH

+
ij

− µi(di, ki − 1, li)u(ki)p
−
ijR
−
ij − θi(di, ki − 1, li)u(ki)q

−
ijH

−
ij

]
. (1)

The solution of the system (1) in an analytic form is difficult task. Therefore,
we shall consider the asymptotic case of a big number of customers in the network,
that is, we assume that K � 1. To find the probability distribution of the random
vectors ~k(t),~l(t), ~d(t) , we move on to the relative variables and consider the vector
η(t)K−1 = (d1K

−1, . . . , dnK
−1, k1K

−1, . . . , knK
−1, l1K

−1, . . . , lnK
−1). Possible values

of this vector at a fixed t belong to a bounded closed set

G =

{
(~y, ~x, ~z, t) = (y1, . . . , yn, x1, . . . , xn, z1, . . . , zn, t) :

xi, zi ≥ 0,
n∑
i=0

xi = K,
n∑
i=0

zi = K, 0 ≤ yi ≤ miK
−1

}
. (2)

We can introduce the distribution density function of expected income in the region:

ρ(~y, ~x, ~z, t) = lim
ε→0

V (y1 ≤ ξ1 ≤ y1 + ε, . . . , yn ≤ ξn ≤ yn + ε, x1 ≤ ξn+1 ≤ x1 + ε, . . . ,

xn ≤ ξ2n ≤ xn + ε, z1 ≤ ξ2n+1 ≤ z1 + ε, . . . , zn ≤ ξ3n ≤ zn + ε, t)ε−3n. (3)

Same as [6] it can be shown that the distribution density function of expected
income with precision O (K−2), satisfy partial difference equations:

∂ρ(~y, ~x,~t, t)

∂t
= − ∂

∂yi

n∑
i=1

A
(1)
i (~y, ~x,~t, t)ρ(~y, ~x,~t, t)− ∂

∂xi

n∑
i=1

A
(2)
i (~y, ~x,~t, t)ρ(~y, ~x,~t, t)

− ∂

∂zi

n∑
i=1

A
(3)
i (~y, ~x,~t, t)ρ(~y, ~x,~t, t) +

n∑
i=1

[
λ+

0ir
(1)
0i − u(ki)pi0ri0

∂µi(yi, xi, zi)

∂xi

− ∂θi(yi, xi, zi)

∂xi
u(ki)qi0hi0 − g(1)

i

∂γi(yi, xi, zi)

∂yi
− ∂µ−i (yi, xi, zi)

∂xi
r−i

]
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−
n∑

i,j=1

[
u(ki)p

+
ijrij

∂µi(yi, xi, zi)

∂xi
+
∂θi(yi, xi, zi)

∂xi
u(ki)q

+
ijh

+
ij

+ u(ki)p
−
ijrij

∂µi(yi, xi, zi)

∂xi
+
∂θi(yi, xi, zi))

∂xi
u(ki)q

−
ijh
−
ij

]
, (4)

where

A
(1)
i (~y, ~x,~t, t) = γi(~y, ~x,~t, t),

A
(2)
i (~y, ~x,~t, t) = −λ+

0i + u(xi)µi(yi, xi, zi)p
+∗
ij

+ µ−i (yi, xi, zi) + u(xi)θi(yi, xi, zi)q
+∗
ij ,

A
(3)
i (~y, ~x,~t, t) = µ−i (yi, xi, zi)− u(xi)µi(yi, xi, zi)p

−∗
ij

+ µ−i (yi, xi, zi)− u(xi)θi(yi, xi, zi)q
−∗
ij ,

p+∗
ij =

{
1− p+

ij, i = j

p+
ij, i 6= j,

and similarly p−∗ij , q±∗ij are derived from p−ij, q
±
ij respectively.

3 Conclusion

The article presents a G-network with unreliable LS and impatient positive and
negative orders in the case when the number of orders operating in the network systems
is large but limited. Asymptotic analysis is used to solve the DDE system. In the
future, it is planned to consider a similar network with incomes and various features.
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The paper deals with a state-of-art problem, related to neural network
training with using algorithms based on random search. One of the main
problems while training using such algorithms is convergence problem. An
original algorithm, based on modification of Boltzmann annealing scheme is
proposed, for which theoretical convergence by probability to optimal solution
from any initial is proved.
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1 Introduction

At the present time a wide class of applied problems solved using neural network
technologies. In this case, the effectiveness of their solution significantly depends on the
quality of neural network training. One of the main tools for training neural networks
are gradient algorithms. They have a number of undeniable positive properties, due
to which they are widely used in practice [1]. At the same time, some algorithms
features have been identified that may limit their use in practice. In particular, they
do not guarantee convergence to an optimal solution [2]. As the range of applied
problems using neural networks expands, many shortcomings may become critical [3].
Therefore, there is a need to search for alternative approaches to training [4]. Random
search is such an approach in relation to gradient (directed) methods. In turn, random
search-based training algorithms, on the contrary, can ensure convergence [5]. The
main problem of the algorithms is their slow convergence [6]. However, at present,
there are virtually no theoretical studies of such algorithms convergence. The paper
examines the specifics of the optimization space in neural network training problems.
It has been shown that it has a unique property of heterogeneity, taking into account
which can significantly speed up the training process. A training algorithm based on a
modification of the Boltzmann annealing optimization scheme that takes this property
into account is proposed. Research is conducted to study the nature of its convergence.

2 Neural networks training

Training neural networks is a typical conditional optimization problem [7]. The features
of the training process are considered and it is shown that the solution space has the
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property of a peculiar heterogeneity. In particular, it is shown that in any parameter’s
variation range there is a relatively small segment of values, the probability of finding
an optimal solution in which is significantly higher than in the remaining range [8].
This means that the power of the set in which the optimal solution is located is much
less than the power of the entire solution space. It was also shown that taking this
property into account in the random search algorithm allows for a significant reduction
in training time.

One of the effective random search algorithms, both from a theoretical and practical
point of view, is Boltzmann annealing. The main advantage of this algorithm is
its guaranteed convergence in probability to the optimal solution. However, the
convergence rate of Boltzmann annealing is logarithmic, which is critical for training
large networks. An approach to constructing a training algorithm based on a
modification of the Boltzmann annealing optimization scheme is proposed, which takes
into account the parameter space heterogeneity.

Let us assume that the objective function F is defined on a finite set of feasible
solutions Ω, for example, mean square error function, and for each element x ∈ Ω
it is possible to build neighbor elements’ vicinity N(x) ⊂ Ω . Then the conditional
optimization problem can be defined as a triple (Ω, F, N ).

Let us use an algorithm based on the Boltzmann annealing optimization scheme to
solve this problem, which can be briefly described as follows.

Initial iteration. The initial solution x0 and the sequence of temperatures Tk =
T0/ ln(k + 2) are given (T0 is initial temperature).

General k-th iteration.
Step 1. Generation of a new solution y based on the current solution x. To do this,

generate a multidimensional increment r to the vector x. Each increment coordinate
is specified by the realization of a uniformly distributed random variable on a segment
centered at zero. New solution is determined as y = x+ r.

Step 2. The objective function estimate for the new solution is calculated (F (y)).
Step 3. New solution is accepted with probability

P (x′ = y|x) = min{1, exp((F (x)− F (y))/Tk)}

Stop criteria. If the time for neural network training has expired, the algorithm
terminates. Otherwise, move to the next iteration is performed.

Let us consider the issues of this training algorithm convergence. First, we introduce
a number of known definitions that will be needed later [9].

A path connecting solution x ∈ Ω with solution y ∈ Ω, is a sequence x1, x2, , xn :
x1 = x, xn = y

xi ∈ Ω, i = 1, n

xi ∈ N(xi−1), i = 2, n

A solution y ∈ Ω is reachable from x ∈ Ω at height h if: x = y, F (y) ≤ h, or there
is a finite sequence of solutions x = x0, x1, x2, ..., xp = y, p > 0 such that:
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{
xk+1 ∈ N(xk), ∀k = 0, p− 1

xk ∈ Ω, F (xk) ≤ h, k = 0, p

Local minima depth of x is called the smallest value d, for which condition ∃y ∈
Ω : F (y) < F (x), y is reachable from x at height F (x) + d is satisfied.

According to convergence theorem [9] algorithm converges in probability to optimal
solution, iff the series

∑+∞
k=1 exp(−d∗/Tk) = +∞ diverges, where Tk is a temperature

series and d∗ is the biggest local minimum depth.
Other theorem limitations and their feasibility were shown in [10]. In [10] it was

shown that to ensure convergence it is necessary and sufficient that T0 >= d∗. However,
the value of the parameter d∗ is not known. Let us conduct a study of the algorithm’s
efficiency with a limited number of iterations and determine the dependence of d∗ value
on the algorithm’s parameters. For simplicity of research, we will consider the solution
space for the one-dimensional case. After that, the obtained results will be formulated
for the general case. For the solution space, the following statements are proved.

Statement 1. Let y be the global minimum point. The equality d∗ = d holds iff the
following conditions are met:∃x ∈ Ω : ∀ε > 0,∃[a, b] ∈ Ω, |a− b| = l, [a, b] ⊆ [x, y] : min

g∈[a,b]
F (g) ≥ F (x) + d− ε;

∀x ∈ Ω : @[a, b] ∈ Ω, |a− b| = l, [a, b] ⊆ [x, y] : min
g∈[a,b]

F (g) > F (x) + d.

From these conditions it is clear that the sought value d∗ can be interpreted as
the maximum value at which there is a segment of length l that separates the point
x from the point of the global minimum y. I.e., a segment of length l must have two
properties:

a) the objective function minimum value on the segment must be greater than its
value at point x by the amount d∗;

b) points x and y must be located on opposite sides of this segment.
Note. There may be several dividing segments with the specified properties.
The neural network training process can be represented as an optimization problem

in a multidimensional solution space Ω. Let us reformulate statement 1 for the
multidimensional case. To do this, we introduce a special set Ω3 that depends on
the selected point x and the d value: Ω3 = {g ∈ Ω|F (g) > F (x) + d} Let us also
introduce the set Ω2 = Ω \ Ω3.

Statement 2. Let y be the global minimum point. The equality d∗ = d holds if and
only if, when the following conditions are met:

a) for ∀d < d∗,∃x ∈ Ω, in set Ω2 does not exist path from x to y;
b) ∀d ≥ d∗, ∀x ∈ Ω, in set Ω2 there exists path from x to y.

Thus, the value of d∗ depends only on objective function F , solution searching space
Ω and sets of neighboring points N(x).

It follows that the function estimating the training algorithm convergence rate under
consideration is a unimodular function with respect to the power of the set N(x). I.e.:
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The smaller the power of the set, the higher the value of d∗ and the higher the value
of T0 required for convergence to the optimal solution vicinity, and, consequently, a large
number of iterations are required for convergence. The greater the power of the set,
the smaller d∗ value and the lower T0 value. However, the large power of the set N(x)
reduces the probability of generating a solution in the vicinity of the optimal solution,
since a multidimensional uniform distribution is specified.
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1 Introduction

Uncertainty in external load and failures of computational equipment lead to
disruptions in operation and degradation of performance in critical IT systems. As
a result, the timeliness of information processing and execution of banking and other
operations is lost, which in turn can have serious consequences (financial losses, major
accidents, etc.).

With the advent of the cloud computing era, it became possible to automatically
adapt the volume of computational resources of critical IT systems to the current load.
Autonomous solutions emerged, capable of promptly managing the scaling of critical
IT services without human involvement. In general, scaling is a task of automated
management of computational resources under changing, highly dynamic, complex
load with uncertainty. An ideal automatic scaling mechanism is capable of minimizing
both costs and violations of service quality.

The literature [1] describes many different research solutions using predictive
models (predictors based on neural networks, autoregressive models, etc.), which
enable operational decision-making. However, there are certain features that prevent
these systems from achieving maximum efficiency under complex, dynamic load with
uncertainty.

The key feature of any automated control system lies in its predictive capabilities
(forecast accuracy and timeliness). Predictions are made based on a sufficiently large
set of previously obtained data. Training on these samples takes a considerable amount
of time and requires high-performance computational resources to effectively train
models within an acceptable timeframe. An example of historical data (average CPU
utilization across computational modules over 4 hours of system operation) is shown
in Figure 1.

A model trained on one dataset (associated with a specific load profile) that
demonstrates good predictive performance on a similar profile may show weak results
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Fig. 1. Example of system historical operation data (mean CPU utilization across compute
modules over 4 hours)

on a different profile. Essentially, each load profile may correspond to its own
predictive model. Alternatively, the training dataset must contain a sufficiently large
number of features that the model can recognize and memorize, enabling some level
of generalization when making predictions. A certain contradiction arises due to the
lack of adaptation of a pre-trained model to new changes in the external load profile,
which are associated with uncertainty. Clearly, adaptation is possible if changes in the
profile are used to improve the existing model or create a new one.

This study proposes a method that enables adaptation to new load patterns
associated with uncertainty by constructing an approximation for data obtained in
real time using neural network models. These models, along with metadata (training
quality metrics, data characteristics), are stored in a model library during operation
and are subsequently used for forecasting when the system transitions to new states.

2 Key Features of Real-Time Management

The key challenge lies in ensuring the timeliness and accuracy of decision-making.
The forecast must be generated within seconds and predict changes tens of seconds
ahead. At the same time, the system faces a number of constraints: data arrives with
uncertainty, the volume of historical samples is small, and their collection frequency
is limited (for example, one sample every 2 seconds). Moreover, it is impossible to
pre-train the model: adaptation must occur in real time.

The system’s flexibility plays a crucial role. Since the nature of the load can
change, the algorithm must adapt to new conditions using minimal data. Traditional
approaches requiring preliminary training or large datasets are unsuitable. Instead, a
mechanism capable of adapting during operation is necessary to ensure stability and
efficiency in resource management.

3 Idea and Method

This ultimately led to the idea that what happened to the system over a long period
of time is not so important. What matters is the ability to make adequate predictions
based on a small amount of data accumulated in real time. Training the model on this
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data and subsequent predictions should be performed quickly enough, in parallel with
the accumulation of new data.

In essence, the idea boils down to the fact that during system operation, the load
profile can be divided into small regions. For each region, during its existence, a model
can be built that describes the behavior in that region and allows making a set of
predictions, based on which the system can transition to a new state. Thus, models will
be created that will have better accuracy within their domain of competence compared
to a global model trained on data prepared over a longer period of time. An illustration
of this idea is presented in Figure 2.

Fig. 2. Segmentation of the load profile into states and selection of state-specific data for
local model training

Forecasting within the local time region leads to the following challenge. Let’s
consider a critical system that can be in a finite set of states S = {S1, S2, . . . , Sn},
determined by external load on the system and transition levels. In each state i the
system generates a discrete signal in the form of a short time series XSi

t (or a set of
time series). The task is to build a predictor based on a neural network using a portion
of this signal, denoted as X̃Si

t , which forecasts the system’s transition to a new state
Si+1.

To solve this problem, we developed the Dynamic Local Approximation by Neural
Network models (DLANN) method. Its essence lies in constructing a simple neural
network model (with one hidden and one output layer) for each system state during
operation. This model trains on partial data from the local region, with the assumption
that a model trained on partial data will adequately forecast for the entire local region
(the concept originates from the Pareto principle). After training, the model uses newly
arriving data to generate forecasts of average %CPU values across a set of computing
modules with specified lead time. These forecasts are compared against state transition
thresholds, and when reached, trigger control decisions. The process then repeats.

To simplify implementation, the parameters that determine the size of the region for
training and the forecasting lead time are predefined and may be tied to the specifics
of a particular system. Automatic parameter selection based on signal characteristics
is possible. Neural networks with identical architecture are used. An option with
automatic architecture selection is possible (for example, changing the number of
neurons in the hidden layer or adding hidden neuron layers), depending on signal
complexity, which can be assessed using any metric or their combination (variance,
entropy, various dimensionality measures, etc.).
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Based on the DLANN method, a multi-model method was developed that utilizes
a model library (Dynamic Local Approximation by Neural Network models with
Library - DLANNLIB). In the previously described process, various neural network
models are created, each associated with a specific state determined by the number of
computational modules. Each model captures the pattern of a particular system state.
These models, along with metadata (training quality metrics, data characteristics), are
stored in the model library during operation and are subsequently used for forecasting
when the system transitions to new states.

The set of models is saved and accumulated in the form of a library. Multiple models
may exist for a single state. For each model, the training quality metric (validation
error) and signal complexity assessment are stored. The model library can be used for
predictions before training a new model in various ways (not all options are listed):

A. Using the model for the previous state. The simplest model selection method.
No metrics of the current signal need to be calculated. If no model was built for the
previous state, the predictor from library models is not used.

B. Selecting the best model for the state based on validation error. When the
system transitions to one of the known states, the model with the lowest validation
error is selected from the library.

C. Creating an ensemble from a set of models corresponding to one state. In this
case, an ensemble (composition without training) is created from predictions of existing
N models for one state, with weights related to validation errors.

D. Creating an ensemble from a set of models corresponding to different states. In
this case, an ensemble (composition without training) is created from existing models
for different states, with weights related to signal complexity.

All these options can be used during training of a new model, as an additional
predictor when the model for the current signal is not yet ready.

Creating a predictor from a set of models can be considered as an independent task.
As shown above, there can be quite many variants of this approach. In particular, one
could use a separate neural network that would perform pattern classification and select
appropriate models to create the predictor. Over time, the model library grows, and
one could implement a forgetting mechanism that retains only the best models.

Using the model library improves forecasting responsiveness, as it enables obtaining
control decisions before the model trained on data for a specific state is ready. This
represents a step toward reactive-type responsiveness while maintaining the ability to
utilize knowledge accumulated by the system during previous states.

The experimental results demonstrate that the proposed method improves the
quality of control for the modeled IT service.
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We consider complete q-ary trees of height H with vertices marked by random
independent marks taking values from the set {1, 2, . . . , N} and forests of such
trees. For both cases we investigate the number of sets of r ≥ 2 paths with fixed
length s such that corresponding s-chains of marks of vertices are identical. We
propose three theorems on sufficient conditions for the asymptotic normality for
considered random values as H →∞ and possibly varying parameters s and q.
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1 Introduction

Studies of the probabilities of repetitions in sequences of independent random variables
had started with investigations of repetitions of chains in sequences of random symbols
(see, for example, [4; 9]). A natural development of these studies had led to problems
associated with repetitions of sequences in trees with randomly marked vertices;
problems of this kind arise in computer science (see [7] and [8]) in the analysis of
algorithms or, for example, in connection with the tree structure of XML documents;
such problems can also arise in connection with the construction of statistical criteria
and the analysis of genetic sequences.

Poisson limit theorems for the number of coincidences of labels of chains in a binary
or q-ary tree whose vertex marks are independent and have an equiprobable distribution
over a finite alphabet were obtained in [10] and [3], and a Poisson limit theorem for
the number of coincidences of sequences in a q-ary tree with equiprobable vertex labels
was proved in [2].

In this talk we consider complete q-ary rooted trees of height H and forests
composed of such rooted trees. Non-root vertices of trees are assigned random marks
chosen independently from the set {1, 2, . . . , N} in accordance with some probability
distribution. We consider such paths of fixed lengths on these trees that transitions on
a path occur in the direction from the root of the corresponding tree.

In the first section of this talk we consider the number of sets of r ≥ 2 paths on
(one) tree that consist of the same number s vertices and for which the corresponding
s-chains of vertex marks coincide. We obtain sufficient conditions for the asymptotic
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normality of this random variable for height H →∞.
In the second section we study repetitions of chains in a forest: it is assumed

that there are r trees that can have different heights H1, . . . , Hr, vertices of these
trees are assigned independent random marks labels. The number of sets of paths of
equal length s is studied, one path in each tree, for which the corresponding s-chains
of vertex labels coincide, and sufficient conditions for asymptotic normality for this
random variable are also obtained.

2 Repetitions of chains on a tree

Let Tr(H) be a complete q-ary tree of height H. We will denote the root of
the tree by the symbol ∗. Let for vertices of this tree be assigned random marks
independently chosen from the set {1, 2, . . . , N} according to probabilities p1, . . . , pN ,
where p1 + . . .+ pN = 1.

Consider such paths in the tree Tr(H) that each path consists of s vertices, where
s < H, and each next vertex of a path is connected by an edge to the previous vertex,
so value s is the length of the path. Now we define random value ξr(H, s) that is equal
to the number of sets of r such ways on the tree Tr(H) with equal values of s-chains
of marks.

By W (H, s) we denote the set of chains of length s in tree Tr(H): the heigth of the
first vertices of such chains is not greater than H − s. It is easy to show that

|W (H, s)| = qH−s+1 − 1

q − 1
· qs =

qH+1 − qs

q − 1
.

Let us enumerate elements of the set W (H, s) by numbers from 1 to |W (H, s)|, so
we denote by ωu the path with the number u, where 1 ≤ u ≤ |W (H, s)|, and s-chain
of marks of vertices on this path we denote by Y (ωu), thus

ξr(H, s) =
∑

1≤u1<...<ur≤|W (H,s)|

I{Y (ωu1) = . . . = Y (ωur)}.

Example 1. In the tree below: q = 2, H = 3, N = 5. For r = 2, s = 2 we have
|W (H, s)| = 12, ξr(H, s) = 2, and for r = 2, s = 2 we have |W (H, s)| = 8, ξr(H, s) = 1.
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Theorem 1. Let H → ∞ and parameters s = s(H) and q = q(H) vary in such a
way that s/H → 0 and there exist such positive numbers C and ε ∈ (0, 1] that for any
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sufficiently large H the following inequality holds:

Dξr(H, s) ≥ C

(
qH+1 − qs

q − 1

)2(r−1)+ε

.

Then the distribution function and moments of random variable

ξ̃r(H, s) =
ξr(H, s)− Eξr(H, s)√

Dξr(H, s)

converge to distribution function and moments of standard normal distribution.

3 Repetitions of chains in forests of trees

Consider similar problem for the number of repetitions of chains in the set of trees.
In this case formulae for expectation and variance of investigated random value have
significantly simplier forms.

Let Tr1(H1), . . . , T rr(Hr) be full q-ary trees with roots of heights H1, . . . , Hr

respectively, let for vertices of these trees be assigned random marks that are
independently chosen from the set {1, 2, . . . , N} according to probabilities p1, . . . , pN ,
where p1 + . . .+ pN = 1.

We study random value ξ(r)(H1, . . . , Hr; s) which is equal to the number of such
sets of r paths of length s that each path belongs to different tree and all paths have
coinciding s-chains of marks of vertices:

ξ(r)(H1, . . . , Hr; s) =
∑

ωu1∈W (H1,s)

. . .
∑

ωur∈W (Hr,s)

I{Y (ωu1) = . . . = Y (ωur)}.

Denote Hmin = min{H1, . . . , Hr}. For any natural l define value Pl =
∑N

k=1 p
l
k, this

value is equal to the probability that any l different vertices from the same tree or
different trees have coinciding marks.

We propose the following sufficient conditions for asymptotic normality of this
random variable.

Theorem 2. Let H1, . . . , Hr → ∞ and parameters s = s(H1, . . . , Hr) and
q = q(H1, . . . , Hr) vary in such a way that s/Hmin → 0 and there exist such positive
numbers C and ε ∈ (0, 1] that for any sufficiently large Hmin the following inequality
holds:

Dξ(r)(H1, . . . , Hr; s) ≥ Cq2(H1+...+Hr)−(2−ε)Hmin .

Then the distribution function and moments of random variable

ξ̃(r)(H1, . . . , Hr; s) =
ξ(r)(H1, . . . , Hr; s)− P s

r

∏r
k=1

qHk+1−qs
q−1√

Dξ(r)(H1, . . . , Hr; s)

converge to distribution function and moments of standard normal distribution.
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Theorem 3. Let the distribution defined by probabilities p1, . . . , pN differ from the
equiprobable distribution on set {1, 2, . . . , N}. Let H1 = . . . = Hr = H, let H → ∞
and parameters s = s(H) and q = q(H) vary in such a way that s/H → 0.

Then exists such C ∈ (0,∞) that for H →∞

Dξ(r)(H, . . . , H; s) = Cq(2r−1)H(1 + o(1))

and the distribution function and moments of random variable

ξ̃(r)(H, . . . , H; s) =
ξ(r)(H, . . . , H; s)− P s

r

(
qH+1−qs
q−1

)r
√

Dξ(r)(H, . . . , H; s)

converge to distribution function and moments of standard normal distribution.

Theorems 1, 2 and 3 had been proven in [6]. Proofs of all presented theorems are
based on Janson’s method [1] in the form, proposed by V.G. Mikhailov in [5].
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The article will analyze the factors influencing the Gross Regional Product
(GRP) and the profitability of the economies of Russian regions. These factors
are represented by the main economic characteristics of the regional economy,
reflecting its structure, level of development, capital-labor ratio, etc. The analysis
methodology involves two stages: first, identifying variables directly related to
GRP and the profitability of the gross regional product; second, constructing
a nonlinear regression model using the identified directly related variables as
explanatory factors. As a result, a sufficiently accurate nonlinear regression model
was obtained for the profitability of the regional economy. This model includes
indices for the extractive and manufacturing industries, as well as GRP per capita.
The model allows us to identify the conditions affecting the industrial indices and
GRP per capita under which profitability will decrease. This demonstrates that
at different stages of economic development, maximizing profitability requires
balancing the industrial structure and the size of the regional economy. In
particular, in highly developed regions, the development of traditional production
sectors is associated with diminishing profitability. The results show that when
focusing on the profitability of the regional economy, economic strategies adaptive
to specific regional characteristics are necessary.

Keywords: Gross Regional Product (GRP); regional economy profitability;
extractive and manufacturing industries indices; economic complexity; nonlinear
regression.

1 Introduction

Profitability of the GRP, measured as the ratio of net profit earned by companies,
enterprises, and other organizations registered in a region to its Gross Regional Product
(GRP), is a crucial indicator of a region’s economic health. The advantage of this metric
compared to commonly used characteristics in regional economic studies (such as GRP
growth rates or GRP per capita) lies in the fact that GRP profitability reflects the final
economic outcome (profit), rather than intermediate measures of economic activity.

The interrelationship between profitability and a regional economy’s structure, its
capital-labor ratio, scale, and other socio-economic factors represents a highly relevant
research direction in economics, especially amidst rapid structural transformation.

Economists reached a consensus relatively long ago that a country’s ability to
generate and distribute income depends on its production structure, as discussed
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in works such as [1–3]. However, using only indices of sectoral specialization as
characteristics of a regional economy’s structure is insufficient. It is necessary to
account for the interconnections between different types of economic activity, the
complexity, and the sophistication of production activities. To quantify the degree
of interconnectedness among various economic sectors within an economy’s structure,
the Economic Complexity Index (ECI) was proposed, see [4–6]. This report will present
a modified Economic Complexity Index capable of capturing the most significant
interdependencies.

High values of the Economic Complexity Index indicate that the economy’s
structure is dominated by interconnected sectors. For instance, industries with
extended production cycles, such as electronics and machinery manufacturing, require a
higher level of coordination and knowledge, thus exhibiting high economic complexity.
Conversely, economic structures dominated by raw material and agricultural sectors
yield low economic complexity values. The relationship between economic complexity
and GRP is nonlinear, see Fig. 1.

Fig. 1. GRP and ranks of economic complexity (Russian regions)

The U-shaped relationship between economic complexity and GRP implies that
both very low and very high levels of economic complexity correspond to high GRP,
whereas a medium level of economic complexity corresponds to lower GRP values.
Thus, according to Fig. 1, two distinct pathways to higher GRP can be identified:
1. through natural resource extraction, or 2. through developing a more complex
industrial economy.

It should be noted that a statistically significant direct relationship between GRP
and economic complexity (when controlling for sectoral specialization indices) is
observed only at high complexity levels exceeding a certain threshold (for the concept
of direct relationship, see [7; 8]).
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2 Model Specification and Results

Based on this identified threshold-based direct relationship, the conceptualization of
an extended production function for GRP has been generalized, see [7]:

Y = c ·Kβ1(S1,S2)Lβ2(S1,S2,T )P γ + ε, (1)

where

β1 (S1, S2) =
µ1e

(µ2·S1+µ3·S2)

1 + µ1e(µ2·S1+µ3·S2)
, β2 (S1, S2, T ) =

λ1e
(λ2·S1+λ3·S2+λ4·T 2)

1 + λ1e
(λ2·S1+λ3·S2+λ4·T 2)

;

T =

{
ECI if ECI ≥ 0.45

0 otherwise
;

c, γ, λ1, λ2, λ3, λ4, µ1, µ2, µ3 - parameters; Y - gross regional product; K - capital stock
(fixed assets); L - average annual number of employees; P - number of researchers;
ECI - economic complexity index; S1 and S2 - indices of sectoral specialization; ε -
errors of model (1).

Table 1
Parameter Estimates for GRP Model (1)

Parameter Estimate Std. Error t-value p-value
c 6.77 0.42 4.53 0.00
µ1 1.79 0.21 2.72 0.01
µ2 (extractive) 0.01 0.00 3.53 0.00
µ3 (manufacturing) -0.02 0.01 -3.68 0.00
λ1 0.33 0.26 -4.35 0.00
λ2 (extractive) -0.01 0.01 -1.96 0.05
λ3 (manufacturing) 0.05 0.01 3.83 0.00
λ4 (complexity) 3.34 1.16 2.89 0.01
γ (researchers) 0.05 0.02 2.81 0.01

As seen in 2, decreasing returns to scale are characteristic of regions with
high concentrations of extractive industries in their economic structure. Decreasing
returns to scale imply that a proportional increase in labor and capital results in
a less-than-proportional increase in output. This may be attributed to the fact that
extractive industries (e.g., mining, oil and gas) are often capital-intensive and may face
challenges such as resource depletion, environmental regulations, or high operational
costs.

Fig. 3 demonstrates that increasing returns to scale are typical for regions with
substantial manufacturing sector concentration and high economic complexity values.
Economic complexity levels exceeding the threshold of 0.45 correspond to higher returns
to scale.
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Fig. 2. Returns to Scale: Economic Complexity Index vs. Manufacturing Sectors index

Fig. 3. Returns to Scale: Extractive Sector vs. Manufacturing Sector

166



A nonlinear regression model has been developed for regional GRP profitability,
capturing the influence of economic structure and regional development level (GRP
per capita), see [8]:

NI

Y
=

µ(1)e(µ
(2)·S1+µ(3)·S2) (Y

P

)(µ(4)+µ(5)·S1+µ(6)·S2)

1 + µ(1)e(µ
(2)·S1+µ(3)·S2) (Y

P

)(µ(4)+µ(5)·S1+µ(6)·S2)
+ εNI , (2)

where µ(1), µ(2), µ(3), µ(4), µ(5), µ(6) - parameters; NI - net income; S1 – extractive sectors
index, S2 – manufacturing sectors index; Y/P - GRP per capita; εNI - errors.

Table 2
Parameter Estimates for GRP Profitability Model (2)

Parameter Estimate Std. Error t-value p-value

µ(1) 0.002 0.83 9.96 0.00

µ(2) 0.13 0.03 7.11 0.00

µ(3) 0.11 0.06 2.50 0.01

µ(4) 0.70 0.14 7.45 0.00

µ(5) -0.02 0.00 -7.35 0.00

µ(6) -0.02 0.01 -2.23 0.03

The model demonstrates high accuracy (concordance correlation coefficient equals
0.95). Based on Model (2), constraints were derived for GRP per capita and
extractive/manufacturing sector indices that are associated with declining GRP
profitability.

Fig. 4. Comparison of Actual GRP Profitability Values vs. Model (2) Estimates

• The expression
(
µ(4) + µ(5)S1 + µ(6)S2

)
determines whether an increase in GRP

per capita leads to growth or decline in profitability. If this value is positive,
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profitability tends to increase with rising GRP per capita, whereas if negative, it
tends to decrease.

• GRP profitability increases with growth in S1 (extractive sectors index) at fixed
GRP per capita (Y/P), when µ(5) log

(
Y
P

)
+ µ(2) > 0, and decreases when

µ(5) log
(
Y
P

)
+ µ(2) < 0.

• GRP profitability increases with growth in S2 (manufacturing sectors index) at
fixed GRP per capita (Y/P) when µ(6) log

(
Y
P

)
+ µ(3) > 0, and decreases when

µ(6) log
(
Y
P

)
+ µ(3) < 0.

Fig. 5 illustrates changes in GRP profitability estimates based on Model (2) across
different combinations of the extractive sector index and manufacturing sector index,
assuming a region with mean GRP per capita.

Fig. 5. Dependence of GRP Profitability on Extractive and Manufacturing Sectors Indices
According to Model (2) (for Mean GRP per Capita)

As seen from Fig. 5, the profitability estimate demonstrates an upward tendency
with increases in both the extractive sector index and manufacturing sector index.
Notably, the growth in GRP profitability is more pronounced in response to the
extractive sector index compared to the manufacturing sector index. The highest GRP
profitability estimates occur when both indices reach maximum values, indicating that
deeper mineral processing substantially enhances GRP profitability.

Fig. 6 shows the relationship between the logarithm of GRP per capita, the
extractive sector index, and GRP profitability when manufacturing sectors index equals
to zero (S2 = 0).

In regions characterized by low GRP per capita, there is a strong positive
relationship between the extractive sectors index and GRP profitability. This indicates
that developing new deposits significantly enhances regional GRP profitability.
However, as easily accessible mineral deposits are depleted, substantial investments
in more complex extraction become necessary, potentially leading to declining GRP
profitability. This tendency is shown in Fig. 6, where at high values of the extractive
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Fig. 6. Dependence of GRP Profitability on the Extractive Sectors Index and GRP per
Capita According to Model (2) (when Manufacturing Sectors Index equals to zero)

sectors index, increases in the logarithm of GRP per capita correspond to reduced
profitability.

Fig. 7. Dependence of GRP Profitability on the Manufacturing Sector Index and GRP per
Capita According to Model (2) (when Extractive Sectors Index equals to zero)

Regions with low GRP per capita also exhibit a positive relationship between the
manufacturing sectors index and GRP profitability (Fig. 7). This suggests that in
less developed regions, expanding manufacturing industries contributes to higher GRP
profitability. In regions with high GRP per capita, the correspondence between the
manufacturing sector index and profitability is less pronounced. At a given GRP level,
profitability increases much more slowly as the manufacturing sector index grows.

Moreover, regions with high GRP per capita and low values of both
extractive and manufacturing sectors indices demonstrate the highest levels of
GRP profitability (Figs. 6 and 7). Economic activity in these regions is
predominantly oriented toward construction, trade, and services – including sectors

169



such as information-communication, finance, and other non-production subsectors
characterized by high profitability. This economic structure combined with high GRP
per capita is typically found in major metropolitan areas.

3 Conclusion

The key substantive economic findings include:

• Development of a nonlinear regression model for regional GRP profitability,
capturing the influence of economic structure and regional development level
(GRP per capita).

• Identification of constraints for GRP per capita and extractive/manufacturing
sector indices associated with declining GRP profitability. This underscores the
critical importance of balancing economic development and economic structure.

• In highly developed regions, further expansion of traditional extractive and
manufacturing industries may prove ineffective for boosting GRP profitability.
Such regions should prioritize transitioning toward service-oriented and
knowledge-intensive sectors. This aligns with the observed tendency of advanced
industrial economies shifting toward service- and knowledge-based industries.

• In economically underdeveloped regions, establishing and expanding traditional
extractive and manufacturing industries remains an effective pathway to enhance
GRP profitability.

• Maximizing profitability requires an optimal balance between GRP per capita
and sectoral structure. This equilibrium evolves with economic development.
Excessive concentration in either extractive or manufacturing sectors can reduce
GRP profitability.

Based on these findings, we propose recommendations for a more flexible tax system
accounting for regional economic structures and development levels to foster nationwide
economic growth and reduce regional disparities:

• Regions with strong manufacturing sectors should implement/expand R&D tax
incentives to stimulate innovation, technological advancement, and emerging
knowledge-intensive industries.

• Regions with higher GRP per capita but low industrial share could sustain
moderately higher tax rates, while less developed regions would benefit from
lower rates to accelerate growth.

• Introduce special tax provisions for major metropolitan areas that account for
agglomeration advantages.

• Regions with low capital-labor ratios require both accelerated depreciation and
investment tax credits to incentivize capital accumulation and productivity gains.
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In conclusion, our probabilistic-statistical analysis of regional economic profitability
reaffirms the significance of adaptive economic strategies that evolve across
development stages. The results highlight the need for regionally tailored policies
rather than universal approaches. Strategies effective for boosting GRP profitability in
less developed regions may prove inefficient or even counterproductive in more advanced
economies.
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1 Introduction

In recent years, artificial neural networks have begun to be widely used in cryptology
and cybersecurity problems [1–4]. Examples of such problems are: approximation of
discrete functions in software pseudo-random sequence generators, assessment of the
quality of s-blocks and other cryptographic primitives; recognition of computer attacks
on information systems. Mathematically, these problems are reduced to the problem
of approximation of binary functions of many binary variables. This publication is
devoted to the study of the properties of this topical problem.

2 Mathematical model and problem statement

Let us introduce the following notation: V = {0, 1} is the binary alphabet; s is a

natural number; V s is an s-dimensional binary hypercube; x = (x1, x2, , xs)
′
∈ V S is

a binary column vector or, in geometric interpretation, some vertex of the hypercube
V s; 1 {B} ∈ V is the indicator of event B, 1 {B} = {1 if B is true; 0 otherwise}.

On the set V s, some unknown binary function of s binary variables is defined:

y = f (x) = f (x1, . . . , xs) , x ∈ V s, y ∈ V. (1)

Let us consider the problem of approximating (restoring) the function (1) using
a random sample of size n from V s: X =

{
x(1), x(2), , x(n)

}
⊆ V s and known values

y(t) = f(x(t)), t = 1, , n. To solve the problem, we use a two-layer (with s inputs, one
hidden layer with m neurons and one output) artificial neural network (ANN), which
is defined by the function f̂(x) = f̂(x1, x2, , xs) ∈ V with N = m(s+ 2) + 1 parameters
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estimated using the sample X:

f̂(x) = σ

(
b0 +

m∑
j=1

bjReLU

(
a0j +

s∑
i=1

aijxi

))
, (2)

here m is a natural number (the number of neurons in the hidden layer), {ail}, {bl}
are the parameters (coefficients, weights) of the model; ReLU(z) = max{0, z}, σ(z) =
(1 + e−z)

−1
are the so-called activation functions [5]. By the l-th neuron of model (2)

we will understand the function Hl(x) = ReLU (a0l +
∑s

i=1 ailxi), l ∈ {1, ...,m}.
The approximation of f(·) using f̂ (·) is obtained as a result of the ANN training

process (2), which consists of minimizing the loss function over {ail}, {bl}:

h(ŷ) = − 1

n

n∑
t=1

(
y(t)log

(
ŷ(t)
)

+
(
1− y(t)

)
log
(
1− ŷ(t)

))
→ min
{ail},{bl}

. (3)

The loss function h(ŷ) in (3) is usually called the “binary cross-entropy” [5]. In formula
(3), the value ŷ(t) = f̂

(
x(t)
)

is the estimate for y(t) obtained during the training process,
and “accuracy” is used to estimate the accuracy of training the proportion of correctly
classified vertices:

α = accuracy =
1

n

n∑
t=1

1
{
ŷ(t) = y(t)

}
∈ [0, 1].

3 Properties of using ANN

When approximating binary functions of many binary variables based on ANN (2),
two important properties arise:

1. a property associated with the presence of regions of piecewise constancy and
multimodality of the objective function (3);

2. a property associated with the choice of the number of neurons m.

3.1 On piecewise constancy and multimodality of loss function

Lemma 1. If the coefficients {ail} of some l-th neuron of the ANN (2) on the set of
vertices X satisfy the condition

a0l +
s∑
i=1

ailxi < 0, ∀x ∈ X,

then the derivative of the function h(·), defined by (3), with respect to the coefficients
{ail, bl} on the set X is equal to 0.
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It follows from Lemma 1 that on the set of ANN parameters

Al =

{
(a0l, a1l, ..., asl) : a0l +

s∑
i=1

ailxi < 0,∀x ∈ X

}
⊂ Rs+1

the objective function is piecewise constant with respect to the parameters of the l-th
neuron. On such sets of piecewise constancy, the use of gradient descent to solve the
minimization problem (3) leads to worse convergence. Another difficulty in solving
problem (3) is the multimodality of the objective function in (3). To overcome these
difficulties, it is proposed to specially select the initial values of the parameters {ail, bl}
as follows. First, we generate them as random variables according to [6; 7] from the
probability distributions:

ail ∼ N
(

0,
2

s

)
, bl ∼ U

[
−
√

6√
m+ 1

,

√
6√

m+ 1

]
,

where N (µ, σ2) is a normal distribution with mathematical expectation µ and variance
σ2; U [a, b] is a uniform distribution defined on the interval [a, b]. If (a0l, a1l, ..., asl) ∈ Al,
then for the parameters {a0l, ..., asl} we repeat the generation until we obtain initial
values outside the region of piecewise constancy Al.

3.2 On evaluation of the number of neurons

When solving the problem of approximating the function f(·) (1), for each vertex
x ∈ X ⊆ V s it is sufficient to use one neuron of the hidden layer. Therefore

1 ≤ m ≤ |X| ≤ |V s| = 2s.

In the following we assume that X = V s. In this case, the number of all possible
different binary functions for approximation is limited and equals 22s . Let W (s,m) be
the number of different binary functions for the approximation of which m neurons in
the hidden layer of the ANN (2) are necessary and sufficient. It follows that

2s∑
m=1

W (s,m) = 22s .

Let us construct a lower bound for the number W (s, 1), i.e. the number of different
functions defined on an s-dimensional hypercube, for the approximation of which an
ANN (2) with one neuron on the hidden layer is sufficient.

Using combinatorics, the following lemmas are proved.

Lemma 2. Any s-dimensional hypercube contains 2s−lC l
s faces of dimension l.

Lemma 3. Let A, B be two finite sets, k be some non-negative integer, Ck (∗) be the
number of different ways to choose k elements from the set ∗. Then the inequality
Ck(A ∪B) ≥ Ck(A) + Ck(B)− Ck(A ∩B) is true.
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Let us agree to say that k vertices (1 ≤ k ≤ 2s− 1) are linearly distinguishable in a
hypercube V s if there exists an (s− 1)-dimensional hyperplane that partitions V s into
two disjoint subsets of k and 2s − k vertices.

Lemma 4. If k vertices are linearly distinguishable on some face of a hypercube, then
the same k vertices can be linearly distinguished in the entire hypercube.

Based on Lemmas 2-4, the following recurrence relation is constructed:
Q(s, k) =

∑s
i=1 (−1)i+12iCs−i

s Q(s− i, k), if k ≤ 2s−1,

Q(s, k) = 0, if k > 2s,

Q(s, k) = Q(s, 2s − k), if k > 2s−1,

Q(s, 0) = Q(s, 2s) = 1.

(4)

Theorem 1. The number Q(s, k) obtained from the recurrence relation (4) is a lower
bound for the number of ways to linearly select k vertices in an s-dimensional hypercube.

Corollary 1. To find a lower bound for the number W (s, 1), it is necessary to sum
the values Q(s, k) over k:

W (s, 1) ≥
2s∑
k=0

Q(s, k).

4 Application of ANN to approximate the

generating function of pseudorandom sequence

generators

Let us consider the problem of approximating the generating functions of
pseudo-random sequence generators based on linear feedback shift registers (LFSRs)
and nonlinear feedback shift registers (NLFSRs), defined by the following general
recurrence relation:

xτ = f (xτ−1, xτ−2, ..., xτ−s) , τ > s.

To apply the ANN (2) the training sample was formed as follows:

x(t) ::= (xt−1, ..., xt−s) , y(t) ::= xt, t ≥ s+ 1.

Two LFSRs [8] and six NLFSRs [9] were studied. For each of them, the smallest
number of neurons mmin required for error-free approximation (α = 1) was found. The
results are presented in Table 1.

5 Conclusion

For the selected model, the regions of piecewise constancy of the loss function “binary
cross-entropy” with respect to the coefficient are found. A lower bound is constructed
for the number of functions that can be approximated by an ANN with one neuron
on the hidden layer. Approximation of some generating functions of pseudorandom
sequence generators (LFSR and NLFSR) is considered.
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Table 1
Approximation of generating functions of LFSR and NLFSR

Num. variables s Function f Num. neurons mmin

7 x1 ⊕ x5 2
15 x1 ⊕ x9 2
17 x1 ⊕ x2 ⊕ x8x11 ⊕ x10x16 6
17 x1 ⊕ x7 ⊕ x3x10 ⊕ x8x13 6
17 x1 ⊕ x2 ⊕ x4 ⊕ x10 ⊕ x13 ⊕ x8x14 7
17 x1 ⊕ x2 ⊕ x8 ⊕ x12 ⊕ x14 ⊕ x7x15 7
17 x1 ⊕ x4 ⊕ x9 ⊕ x12 ⊕ x13 ⊕ x4x12 7
24 x1 ⊕ x2 ⊕ x9 ⊕ x10 ⊕ x16 ⊕ x8x19 7
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Panel (or longitudinal) data describes a set of objects which are observed
during certain period of time, so they consist of repeated observations of the
same objects in sequential time periods. The following examples of panel data
can be mentioned: annual household studies, monthly performance indicators
for economic institutions and many others. In this study we provide another
approach to forecasting cross-sectional data based on state space models together
with Kalman filtering procedure.

Keywords: forecasting; panel data; state space model; Kalman filtering.

1 Introduction

In economic researches regression models are widely used within large number of
applications [1]. Regression models for panel data allow usage of two indices to describe
the data: yi,t = α + Xi,tβ + xi,t, where i defines object index (household, company,
country, etc), t denotes timestamp of an observation, α is an unknown intercept, β
is a (n × 1)-vector of unknown parameters, Xi,t is a known matrix denoting factors
which influence observations. Uncontrollable factors xi,t are modeled with the following
equation: xi,t = µi + εi,t, where µi is an unobservable individual effect of i−th object,
εi,t is a random variable which defines random uncontrollable effect.

Statistical analysis of panel data can be carried out using state space models. In
order to express panel data in a state space form it is necessary to introduce one more
index i for state parameters vector xt in classic state space model formulation. This
resutls in xi,t, where t = 1, · · · , Ti, i = 1, · · · , K, t denotes timestamp, i denotes object
index. It means that the mathematical model for panel data is a random field {xi,t},
t ∈ {1, . . . , Ti}, i ∈ {1, . . . , K}.

Based on linear state space models [2] we express panel data in a state space form:
xi,t = Fxi,t−1 + ω1,t, yi,t = Hxi,t + ω2,t, where xi,t is an unobserved state of i-th object
at moment t, yi,t is an observation for the object at the same moment. In common
case xi,t ∈ Rn

1 , yi,t ∈ Rn
2 , {ω1,t} and {ω2,t} are sequences of i.i.d. random variables ω1,t,

ω2,t ∼ N (0, Q), xi,0 ∼ N (µ, P ). The parameters of the model are F,H, µ, P . And the
problem is to estimate future observations xi,t+h, yi,t+h based on previous observations
yi,s, s = 1, · · · , t, h > 0.
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2 Kalman Filter

Kalman Filter [3] allows to build optimal in mean-squared sense forecasts if they are
introduced in linear state space form. Let us consider the following xti,t = E{xi,t|yti,0},
P t
i,t1,t2

= E{(xi,t1 − xti,t1)(xi,t2 − xti,t2)|yti,0}, where yti,0 = {yi,j, j = 1, . . . , t}.
Kalman Filter can be expressed using the following equations [2; 3]

xti,t = xt−1
i,t +Ki,t(yi,t −Hi,tx

t−1
i,t , P t

i,t = (1−Ki,tHi,t)P
t−1
i,t , (1)

Ki,t = P t−1
i,t H

T
i,t(Hi,tP

t−1
i,t H

T
i,t +R)−1, (2)

where i ∈ {1, . . . , K}, t ∈ {1, . . . , Ti}, xi,0 = µ, P 0
i,0 = P .

In order to compute forecasts for xi,t for h lags forward equations (1)–(2) are used
with initial values xTi,t, P

T
i,t instead of x0

i,0, P 0
i,0.

In order to predict observed values yi,t for h future lags we provide the following
procedure: yi,t+h = E{yi,t+h|yTi,0}, BT

i,T+h = E{(yi,T+h − yTi,T+h)|yTi,0}. Using Kalman
Filter (1)–(2) the following equations for forecasting statistics are provided:

xTi,T+h = FxTi,T+h−1, yTi,T+h = Hix
T
i,T+h, (3)

P T
i,T+h = FP T

i,T+h−1F
T +Q, BT

i,T+h = HiP
T
i,T+hHi +R. (4)

3 Panel data in linear state space form

Classic linear mixed regression model in a compact form can be expressed in the
following way: y = Xβ + Zγ + ε, E{γ, ε)} = (0, 0), cov(γ, ε) = diag(Q,R), where
y is observed variable with the following expectation and covariance E{y} = XB,
cov(y, y) = ZQZT + R. Matrices X and Z describe determined and stochastic
effects in observations respectively. For panel data modification of a linear mixed
regression model observations for i-th object yi = (yi,1|, · · · , yi,Ti)T , i ∈ {1, . . . , K} are
aggregated for t ∈ {1, . . . , Ti} which results in the following model: yi = Xiβ+Ziγi+εi,
γi ∼ N (0, G), εi = (εi,1, εi,Ti)

T ∼ N (0,Σ), which leads to yi ∼ N (Xiβ, ZiGZ
T
i + Σi).

One of the possible ways of expressing longitudinal modification of mixed regression
model in state space form can be expressing observations yi,t as a single vector of higher
dimensionality, then the state and observation equations can be formulated as following

yi,t = xTi,tβi,t + ZT
i,tγ + εi,t, βi,t = βi,t−1, (5)

where εi,t ∼ N (0, σ2).
Then we apply Kalman filtering procedure (1)–(2) to the panel data model (5) and

finally construct forecasting statistics (3)–(4).

4 Computational experiments

Let us consider the case described with the model (5). Let the observation vector
be a constant vector with additive errors defined by AR(1) process: yi,t = βi + εi,
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εi ∼ N (0,Σt), Σt(i, j) = σ2φ|i−j|/(1− φ2), |φ| < 1. One of possible state space models
for this case can be the following: yi,t = βi + εt, εt = φεt + ωt, ωt ∼ N (0, σ2) with the
initial conditions εt = N (0, σ2/(1− φ2)).

The task is to estimate model parameters which can be non-trivial due to nonlinear
relationships between parameters. After parameters estimates are built they can be
used to construct forecasts xi,t+h, yi,t+h. In order to avoid this problem we construct
another state space form

yi,t = µ+ βi + εi, xi,t =

(
εt
βi

)
=

(
φ 1
0 1

)(
εt−1

βi

)
+

(
ωt
0

)
, yi,t = (1, 1)xi,t,

with ωt ∼ N (0,Ω) and the initial condition (ε0, βi)
T ∼ N (0, G), where G =

diag(σ2/(1− φ2), 0), Ω = diag(σ2, 0).
Finally this results in linear state space model and we can apply Kalman filtering

procedure (1)–(4). For computational experiments we generated two-dimensional time
series according to model described above. The experients were carried out with the
following parameters: µ = 0, σ2 = 1, φ = 0.5, βi = 1. To construct forecasting
statistics equations (3)–(4) were used. Forecasting horizon with h = 10 was used.
We observed mean absolute percentage error below 2.1% which indicates possibility of
modeling panel data using the described approach.
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The paper is devoted to a sequential statistical procedure for early change
detection in a probability distribution of observations.
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Let X1, X2, . . . be a sequence of i.i.d. random variables,

Wn+1 = max{0,Wn +Xn+1}, W0 = 0,

T = inf{n ≥ 1 : Wn ≥ b}, b > 0.

We obtain two-sided inequalities for the mean stopping time E{T} under conditions
E{X1} > 0 and E{X1} < 0. These bounds are then used to characterize the quality
of the sequential procedure of cumulative sums (CUSUM procedure) for the early
detection of change in distribution.
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The article is devoted to generalization of frequency estimators for the
probabilities of s-tuples in binary random sequences. Such estimatoros are widely
used for random numbers testing. Expectation and covariances of the generalized
frequencies are calculated.
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1 Introduction

Random numbers are required in many areas: statistics, physics, computer science and
others. For example, in statistical physics Monte Carlo method is used for molecular
modeling [1]. Random numbers are of particular importance in cryptography. They
are needed to form keys, initialization vectors, initial values of variables in algorithms
and for other tasks [2]. Specialized software or hardware devices (generators) are
used to obtain random numbers. Typically cryptographic generators produce binary
(bit) sequences. Generators used in information security systems must meet strict
requirements for the quality of output sequences. Using vulnerable generators leads
to key compromise and disclosure of confidential information. Therefore a thorough
analysis of the reliability of the developed and used generators is necessary.

2 Frequency estimators for the probabilities of

s-tuples

Binary output sequence of a secure generator must be indistinguishable from
equiprobable Bernoulli sequence with a success probability of 1/2 (null hypothesis
H0). Statistical testing of the generator’s output sequences is used to verify this
property. Statistical tests are combined into batteries (sets). Each test verifies a
specific property of a truly random sequence. For example, the number of zeros in
the sequence should not differ significantly from the number of ones, there should not
be Markov dependence, and many other properties. In practice such test batteries
as NIST, Diehard, TestU01 are widely used. However these and other test batteries
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have a number of shortcomings and limitations: they test a simple null hypothesis,
the family of alternatives is not fixed, relatively simple alternatives may not be found.
For example, in [3] generator built on the basis of a combination of 27-bit and 16-bit
linear-feedback shift registers successfully passed all NIST tests. In [4] it is shown that
the NIST battery may fail to reject cryptographically weak binary sequences containing
repeating blocks of large length. The examples given show that development of new
methods and algorithms for analyzing the quality of cryptographic generators is an
important task.

If the null hypothesis for binary sequence {xt ∈ {0, 1} : t ∈ N} is true then the
s-dimensional probability distribution (for any s ∈ N) will be uniform:

pJs1 = P{xt = j1, . . . , xt+s−1 = js} =
1

2s
, Js1 = (j1, . . . , js) ∈ {0, 1}s. (1)

Let us consider a binary sequence of length T = ms: X = (x1, . . . , xT ) ∈ {0, 1}T .
To check the s-tuples uniformity (1) it is necessary to construct statistical estimates
p̂Js1 for probabilities pJs1 . There are two approaches to calculating these frequencies.
The first approach uses overlapping fragments of X, the second uses non-overlapping
ones. In the first case the estimators are as follows:

ν(Js1) =
T−s+1∑
t=1

1(xt = j1, . . . , xt+s−1 = js),

where 1(·) is the indicator function.
Frequencies for the second case calculated using non-overlapping fragments, have

the form:

µ(Js1) =
m∑
t=1

1(x(t−1)s+1 = j1, . . . , xts = js).

Under the null hypothesis frequencies µ(Js1) are sums of independent random variables
with a uniform probability distribution on {0, 1}s, which simplifies the construction
of statistical tests based on these frequencies. Using frequencies ν(Js1) allows one to
use more information about the binary sequence X, but their use requires additional
calculations.

In this paper the following generalization of frequencies ν(Js1) and µ(Js1) is proposed
for statistical testing:

ν∆(Js1) =
T ′∑
t=1

1(x(t−1)∆+1 = j1, . . . , x(t−1)∆+s = js),

where T ′ =
[
T − s

∆ + 1
]
, ∆ = 1, . . . , s.0 If ∆ = 1 then frequencies ν∆(Js1) coincide

with ν(Js1), if ∆ = s then ν∆(Js1) coincide µ(Js1).
Thus parameter ∆ specifies the size of the shift between adjacent fragments when

calculating frequencies. The choice of this parameter allows to maintain a compromise
between the degree of fragment dependence and the accuracy of calculating the
probability estimators of s-tuples.
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Under the null hypothesis the expectation of ν∆(Js1) is

E{ν∆(Js1)} = T ′pJs1 , pJs1 = p = 2−s, ∀Js1 ∈ {0, 1}s. (2)

Frequency covariances are:

cov{ν∆(Is1), ν∆(Js1)} = T ′p1{Is1 = Js1}+

+p
K∑
k=1

(T ′ − k)2−k∆
(
1{Isk∆+1 = Js−k∆

1 }+ 1{Jsk∆+1 = Is−k∆
1 }

)
−

−p2 (T ′K + (T ′ −K)(K − 1)) ,

(3)

where T ′ =
[
T − s

∆

]
+ 1, K =

[
s− 1

∆

]
.
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This paper presents monthly mixed-frequency models MIDAS,
MIDAS-GETS and MF-VAR describing the dependence of the producer
price index in industry of the Republic of Belarus on the Belarusian consumer
price index and producer price index in industry of the Russian Federation.
Daily growth rates of the Belarusian ruble against the US dollar and the Russian
ruble are used as real-time data. The models demonstrate significantly higher
accuracy of out-of-sample short-term forecasts compared to ARX and VARX
models with the similar exogenous structure and average monthly exchange
rates. The causal analysis based on the MF-VAR and VARX models allows us
to conclude that the Russian index of industrial producer prices has a leading
influence on the Belarusian indices.
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1 Relevance of the problem

Econometric models based on mixed-frequency data have emerged and have been
intensively developed in the last two decades. They provide a new methodology for
joint analysis and forecasting of time series with different observation frequencies,
which is relevant in the context of the growing volume and diversity of information
available from various sources in real time. Thus, the use of variables with a
higher frequency (e.g., week, day, hour, etc.) in models for low-frequency indicators
(quarterly, monthly) made it possible to create automated platforms for monitoring
macroeconomic and financial processes in real time [1]. In [2], the first such strictly
substantiated platform was developed, combining models based on mixed-frequency
data, including large arrays of macroeconomic, financial and news data. Machine
learning and artificial intelligence methods are used in the implementation of such
approach. The relevance of mixed-frequency models is related to the need for early
assessment (nowcasting) of key macroeconomic and financial indicators before their
official values appear with a significant delay. Compared with traditional models based
on aggregated data, mixed-frequency models allow taking into account the dynamics
of high-frequency variables arriving in real time within the low-frequency interval of
the modeled indicator.
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2 Models based on mixed frequency data

In this paper, the following models are constructed using high-frequency real-time data:

• MIDAS/PDL (Mixed Data Sampling with Polynomial Distributed Lags) – a model
with restrictions on the lags structure determined by the Almon polynomial
distributed lags [3];

• MIDAS-GETS – a model with lags structure optimization based on machine
learning algorithms according to the General-To-Specific approach (GETS) [4];

• MF-VAR (Mixed-Frequency Vector Autoregression) [5] – a vector autoregression
model on mixed-frequency data for joint forecasting of several low-frequency
variables using high-frequency data.

The effectiveness of these models is compared with traditional univariate and vector
autoregression models ARX and VARX on aggregated high-frequency exogenous
variables [6].

The MIDAS modeling. Historically, the first model for mixed data is the MIDAS
regression model [7]. By now, its various modifications are known, see the review
[5]. The MIDAS model uses stationary representations of economic and financial time
series.

Let us give an analytical description of the MIDAS/PDL model. For a discrete
moment t = 1, . . . , T on a low-frequency time scale, the superscripts M and D
correspond to monthly and daily time series:

• Y M
t and Y M

t−1 – time series of endogenous variable and its lags;

• ZM
k,t−1 (k = 1, . . . , K) – time series of leading monthly exogenous economic

variables;

• dMl,t (l = 1, . . . , L) – time series of monthly dummy variables to account for
structural changes;

• ηt – independent and identically distributed random errors of observations
according to the normal law.

The MIDAS model with Almon polynomial distributed lags for exogenous
high-frequency variables and polynomial order p is denoted by MIDAS/PDL/p, S. The
lag structure of this model for high-frequency variables is determined by a weighting
function with coefficients θ(s) = (θ

(s)
0 , . . . , θ

(s)
p )′:

wτ (θ
(s)) =

p∑
j=0

θ
(s)
j τ j, τ = 0, 1, 2, . . . , s = 1, . . . , S. (1)
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The MIDAS PDL/p, S model in the accepted notations allows for the following
representation:

Y M
t = µ+α1Y

M
t−1+

K∑
k=1

γkZ
M
k,t−1+

L∑
l=1

γld
M
l,t+

2∑
s=1

(
p∑
j=0

θ
(s)
j X

M

s,j,t

)
+ηt, t = 1, . . . , T, (2)

where

X
M

s,j,t =

qMXs−1∑
τ=0

τ jXD
s,(t−τ)/m (3)

– projection of the values of the s-th daily variable at time t onto the monthly interval;
XD
s,(t−τ)/m is the value of the s-th daily variable for the time interval (t− τ)/m, where

hyperparameter m (m ≤ ND or m > ND, where ND is the number of days in a month)
is the number of lags of the daily variable in the low-frequency interval; qMXs the order
of lags for the s-th aggregated high-frequency exogenous variable in the low-frequency
equation.

A non-parsimonious alternative to the MIDAS/PDL model is the U-MIDAS
(Unrestricted MIDAS ) model [5], without restrictions on the parameters with the same
set of low-frequency variables as model (2), which has the form:

Y M
t = µ+α1Y

M
t−1+

K∑
k=1

γkZ
M
k,t−1+

L∑
l=1

γld
M
l,t+

2∑
s=1

(
m∑
j=1

θ
(s)
j XD

s,t,j

)
+ηt, t = 1, . . . , T. (4)

According to (5), each of the m values of the daily variable in the U-MIDAS
model corresponds to a separate low-frequency (monthly) variable. Due to this, the
U-MIDAS model is linear in parameters and can be estimated using the linear least
squares method. Obviously, the nonlinear MIDAS/PDL/p, S model is more economical
in the number of estimated parameters than U-MIDAS. This advantage is more
significant the greater the difference in the frequency of observation of low-frequency
and high-frequency variables.

MIDAS-GETS model. The method of construction the MIDAS-GETS model
uses an algorithm for optimizing the lags structure. In final the model includes
statistically significant lags for each high-frequency variable. The MIDAS-GETS
model, like the U-MIDAS, has a linear lag structure, but allows for a significant
reduction in the number of parameters. Due to linearity, it is more convenient for
interpretation than the MIDAS/PDL model. In addition, in the paper we use its
modification, which carries out an automatic search for anomalous observations in
low-frequency time series with the inclusion of corresponding dummy variables in the
model.

MF-VAR model. In the model MF-VAR(p) of order p, high-frequency variables
are used linearly, as in U-MIDAS [5]. This means that if the model uses m previous
days to construct the current monthly forecast, then value for each day is included in
the model as endogenous variable jointly with the original set of endogenous variables.

In the simplest case, for one endogenous variable and one high-frequency variable
with m values XM

t,1, . . . , X
M
t,m in the low-frequency interval the MF-VAR(p) model takes
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the form:

Y M
t = ct +

∑m
j=1

∑p
l=1 β

1,j
l XM

t−l,j +
∑p

l=1 β
1,m+1
l Y M

t−l + ηt,1,

XM
t,1 = ct +

∑m
j=1

∑p
l=1 β

2,j
l XM

t−l,j +
∑p

l=1 β
m+1,2
l Y M

t−l + ηt,2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

XM
t,m = ct +

∑m
j=1

∑p
l=1 β

m,j
l XM

t−l,j +
∑p

l=1 β
m+1,m
l Y M

t−l + ηt,m,

(5)

where
ct = µ+

∑K
k=1 γkZ

M
k,t−1 +

∑L
l=1 γld

M
l,t . (6)

Model (5), (6) is a linear VAR model in terms of parameters and can be estimated
by traditional methods for relatively small values of the triple of parameters (m, p, S).
It allows the use of the Granger causality test [8] to analyze the nature of the causal
relationship between endogenous variables, as well as conducting an Impulse Response
Analysis [9]. To construct and select the best models, it is necessary to specify
hyperparameterm, the values ofm significantly affect the statistical properties, forecast
accuracy and performance of the models, which requires further optimization of the
models by hyperparameters.

3 The problems and data used

Problems of the study. In [10] we proposed monthly and quarterly MIDAS models
for the consumer price index (CPI) in the Belarusian economy based on the effect of
exchange rate pass-through to inflation. As real-time data in these models we use daily
grows rates of the exchange rates of the Belarusian ruble for major currencies.

Due to the high degree of integration of the Belarusian and Russian economies
[11], as well as the significant share of industrial production in the structure of GDP,
the producer price index in industry is of greatest interest [12]. In this regard, the
purpose of this study is to solve the following problems of analyzing and forecasting
main inflation indicators in the Belarusian economy on the models with mixed and
aggregated data:

1) causal analysis of the producer price index of industrial products PPI RB and
the consumer price index CPI RB using daily growth rates of the exchange rates
of the Belarusian ruble to major currencies;

2) nowcasting and short-term forecasting of the target indicator PPI RB based on
univariate models as well as jointly forecasting of all indices PPI RB, CPI RB,
PPI RU using multivariate models;

3) analysis of the impact of industrial producer prices in the Russian economy on
the considered inflation indicators in the Belarusian economy.

Data used. To build the models we use time series of price indices provided by the
National Statistical Committee of the Republic of Belarus, the Federal State Statistics
Service of the Russian Federation, as well as official exchange rates of the Belarusian
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ruble of the National Bank of the Republic of Belarus for the observation period from
June 2017 to December 2024:

• PPI RBt – seasonally adjusted time series of the producer price index for
industrial products of the Republic of Belarus (month to month in %);

• CPI RBt – seasonally adjusted time series of the consumer price index of the
Republic of Belarus (month to month in %), time series;

• PPI RUt – time series of the producer price index of industrial products of the
Russian Federation (month to month in %) without seasonal adjustment;

• RUR BYN Dt and USD BYN Dt – time series of daily growth rates (day to day,
in %) of the official exchange rates of the Belarusian ruble against the Russian
ruble and the US dollar.

4 Forecasts accuracy evaluation and causality

analysis

The forecast accuracy indicators such as root mean square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE) are used for
assessing retrospective and out-of-sample one-step forecasts for ARX, VARX models
and nowcasts for MIDAS/PDL, MIDAS-GETS, MF-VAR. The retrospective forecasts
are constructed for the entire models estimation period. The out-of-sample forecasts
and nowcasts are obtained during one year by means of an expanding window algorithm
that sequentially excludes the forecast month from the model’s estimation period,
beginning from January 2024 and up to November 2024.The results of the accuracy
assessment of retrospective one-step forecasts and nowcasts for the target indicator
PPI RB on the base of univariate models are presented in Table 1, and for multivariate
models – in Table 2.

Table 1
Forecasts accuracy evaluation for target indicator PPI RB

Retrospective forecasts
Indicators MIDAS MIDAS-GETS ARX
RMSE 0,2973 0,1753 0,2883
MAE 0,2411 0,1284 0,2352
MAPE 0,2396 0,1276 0,2338

Out-of-sample forecasts
Indicators MIDAS MIDAS-GETS ARX
RMSE 0,2438 0,2382 0,2812
MAE 0,2166 0,2031 0,2350
MAPE 0,2156 0,2020 0,2336
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Table 2
Out-of-sample forecast accuracy for three indices

MF-VAR
Indicators CPI RB PPI RB PPI RU
RMSE 0.156525 0.232963 1.342147
MAE 0.121449 0.198602 0.973767
MAPE 0.120920 0.197601 0.976148

VARX
Indicators CPI RB PPI RB PPI RU
RMSE 0.131484 0.284091 1.146631
MAE 0.107709 0.236294 0.932707
MAPE 0.107213 0.234952 0.929154

5 Causality analysis based on multivariate models

Fig. 1. Responses of PPI RB to impulse shock impacts from CPI RB and PPI RU

Using the Granger causality test [7] and Impulse Response Analysis [8], the leading
nature of both CPI RB and PPI RU indices was established for the PPI RB index:
the CPI RB index has a lead of 1 lag, while the PPI RU index has a lead of 2 lags.
At the same time, the effects of a significant increase in industrial producer prices in
Russia have a significantly longer attenuation period than the effects of consumer price
growth in the Belarusian economy.

Figure 1 illustrates the responses of the industrial producer price index PPI RB
to impulse shocks from consumer prices in Belarus and industrial producer prices in
Russia. An impulse shock in the form of a one-time increase in the CPI RB consumer
price index causes an increase in the PPI RB index, which reaches its maximum value
within one quarter and then fades away rather quickly. While similar shocks from
producer prices in the Russian industry PPI RU are maximally manifested in the
PPI RB index over two quarters, and their extinction occurs over 2-3 quarters.
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1 Introduction

Let Xn = (X1, . . . , Xn) be an observed random sample of n i.i.d. random vectors
from L ≥ 2 classes Ω1, . . . ,ΩL. Observation Xt is a member of the class with random,
unknown number d0

t ∈ S, S = {1, . . . , L}, t ∈ {1, . . . , n}. If the class number is fixed:
d0
t = i, i ∈ S, than Xt is a realization of length Tt (Xt = (xt1 . . . , xtTt)

′ ∈ RTt , ′ means
transposing) of the time series which may be represented [1; 3] using autoregressive
model xi = {xil}

+∞
l=−∞ of order p p ≥ 1 (AR(p) for short)

xil + θ0
i1x

i
l−1 + . . .+ θ0

ipx
i
l−p = uil, l ∈ Z, (1)

where Z = {0,±1,±2, . . .}, θ0
i ∈ Rp are autoregressive parameter for class with number

i, and {uil}
+∞
l=−∞ are independent in total, identically distributed random values with a

mathematical expectation of 0 and the same variation σ2 for all classes Ωi:

E
{
uil
}

= 0, D
{
uil
}

= σ2, l ∈ Z, i ∈ S. (2)

Classes Ωi differ from each other by autoregressive coefficients θ0
i , and by prior

probability

P
{
d0
t = i

}
= π0

i > 0, i ∈ S,
L∑
i=1

π0
i = 1. (3)

The problem is to classify the observations Xn = (X1, . . . , Xn) between the classes
Ωi, so, to construct the decision rule (DR):

d = d(X1, . . . , Xn) ∈ S, S = {1, . . . , L}, (4)

and then, to estimate efficiency of this rule using generalized risk.
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2 Decision rule in the AR coefficients space

The model (1) can also be written as Wold decomposition [1; 2]:

xl +
∞∑
j=1

θjxl−j = ul, l ∈ Z (5)

Let us calculate the estimate for the first p autoregressive coefficients θ(p) =

(θ̂1, . . . , θ̂p)
′ using realization XT = {xt; t = 1, . . . , T}:

θ̂(p) = −

(
T∑

t=p+1

XtX
′
t

)−1 T∑
t=p+1

xtXt, (6)

where Xt = (xt−1, . . . , xt−p), t ∈ {p+ 1, . . . , T}.
The decision then is to take such a class that the distance between estimates and

true autoregressive coefficients for this class is minimal across all the classes. So,

d = d(X) = arg min
i∈S
|θ̂ − θ(i)| = arg min

i∈S
|θ̂ − θ(i)|2 =

= arg min
i∈S

{∣∣∣θ̂(p) − θ(i)
(p)

∣∣∣2 +
+∞∑
j=p+1

(
θ

(i)
j

)2
}
, (7)

where θ̂ = (θ̂′(p), 0, . . . , 0, . . . )
′, and θ

(i)
(p) = (θ

(i)
1 , . . . θ

(i)
p )′, i ∈ S

If the AR(p) model is such that θ(i) = ((θ
(i)
(p))
′, 0, . . . , 0, . . . )′, then the decision rule

from (7) can be simplified:

d = d(X) = arg min
i∈S

∣∣∣θ̂(p) − θ(i)
(p)

∣∣∣ . (8)

3 Generalized risk for the decision rule

To measure the efficiency of the proposed decision rule, we will use generalized risk [4]:

rT = P{d(X) /∈ D0}, D0 =

{
k :

∣∣∣∣θ − θ(k)| = min
i∈S
|θ − θ(i)

∣∣∣∣} (9)

where D0 ⊆ S is a set of the numbers of such classes, for which the time series from
(5) is closer in the term of Euclidean distance. The generalization of risk allows us to
handle the cases where there are multiple classes that are closest, when the function
of decision rule returns a set instead of a number. The risk itself rT is a probability
(0 ≤ rT ≤ 1 ) not to assign the time series by its realization X = {xt}Tt=1 to one of the
closest classes. So, risk is used to measure the efficiency of the decision rules in the
following way: the lower the risk, the more efficient is the decision rule.

To cover border cases, if D0 = S, then rT = 0, so the decision rule is not relevant.
If |D0| = 1, so the set is of one element, then we will get the classic risk and (9) can
be simplified to

rT = P{d(X) 6= d0}, d0 = arg min
i∈S
|θ − θ(i)| (10)
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The article is devoted to dissemination of the known for the usual
matrices generalized inverse Moore-Penrose matrix to the multidimensional
matrices. At first, the generalized inverse Moore-Penrose matrix for the usual
matrices is considered. Then the definition of the generalized Moore-Penrose
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Keywords: inverse Moore-Penrose matrix; multidimensional matrix;
polynomial multidimensional-matrix regression.

1 Introduction

The generalized inverse Moore-Penrose matrix is one of the amazing scientific
achievements of the 20th century. It was proposed by E. H. Moore in 1920 [1], and
more detail considered in 1955 by R. Penrose [2] without cite of the Moore’s work.
The mechanism of its properties has not been fully studied. The epithet pseudoinverse
assigned to it restrained and restraints its widespread use. In this article, the sphere
of application of the generalized inverse Moore-Penrose matrix is expanding to the
multidimensional matrices.

2 The generalized inverse Moore-Penrose matrix

for twodimensional matrices

Let us denote M(R,m, n) the set of all m × n real matrices, and A ∈ M(R,m, n) is
the m× n matrix with real elements.

Let A ∈M(R,m, n). The matrix A+ ∈M(R, n,m) satisfying the equalities

AA+A = A, (1)

A+AA+ = A+, (2)

(AA+)T = (AA+) (the matrix AA+ is symmetric), (3)

(A+A)T = (A+A) (the matrix A+A is symmetric), (4)

194



is called the generalized inverse Moore-Penrose matrix (MP-inverse matrix) to the
matrix A ∈M(R,m, n) [2].

Theorem 1. Let the linear vector-matrix equation AX = B be solved. The vector
X = A+B provides the minimal value of the Euclidean norm ||AX − B|| and has
minimal value of the Euclidean norm ||X|| [3; 4].

3 The generalized inverse Moore-Penrose matrix

for multidimensional matrices

The question of the inversion of the multidimensional matrices is the key one in
solution of many multidimensional-matrix problems. It is of interest the algorithms
and programs for practical use, i.e. numerical algorithms for the matrices of the big
sizes. Such algorithms and programs are developed for the twodimensional matrices,
so it is advisably to consider the inverse of the multidimensional matrices as the inverse
of their associated twodimensional matrices.

The matrix A is called k-dimensional, if its elements contain k indices i1, . . . , in [5;6]:

A = (ai1,...,in), iα = 1, . . . , nα, α = 1, . . . , k.

If n1 = n2 = · · · = nk = n, then the matrix A is called k-dimensional matrix of the
order n.

The matrix denoted by E(λ, µ) is called (λ, µ)-unit matrix, if it satisfies the
equalities

λ,µ(AE(λ, µ)) =λ,µ (E(λ, µ)A) = A

for any (λ+ 2µ)-dimensional matrix A = (al(µ),s(λ),c(µ)
) of the order n , where l(µ), s(λ),

c(µ) are µ−, λ−, µ−multiindices respectively [5; 6].
The matrix λ,µA−1 is called (λ, µ)-inverse to the (λ + 2µ)-dimensional matrix A =

(al(µ),s(λ),c(µ)
) of the order n , if it satisfies the equalities:

λ,µ(Aλ,µA−1) =λ,µ (λ,µA−1A) = E(λ, µ).

The matrix denoted by Es(λ, µ) is called symmetrical (λ, µ)-unit matrix, if it
satisfies the equalities

λ,µ(AsE
s(λ, µ)) =λ,µ (Es(λ, µ)As) = As

for any symmetrical (λ+ 2µ)-dimensional matrix As = (al(µ),s(λ),c(µ)
) of the order n [6].

The matrix λ,µA−1
s is called (λ, µ)-inverse to the symmetrical (λ+ 2µ)-dimensional

matrix As = (al(µ),s(λ),c(µ)
) of the order n , if it satisfies the equalities:

λ,µ(As
λ,µA−1

s ) =λ,µ (λ,µA−1
s As) = Es(λ, µ). (5)

The problem of inversion of the symmetrical multidimensional matrices is especially
acute since the matrices associated with the symmetrical multidimensional matrices are
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singular. This means that the (usual) inverse matrix λ,µA−1
s satisfying the equalities (5),

does not exist. The way out in this situation lies in the area of so-called pseudoinversion
of matrices.

Definition. The generalized (λ, µ)-inverse Moore-Penrose matrix (MP (λ, µ)-inverse
matrix) to the (λ+2µ)-dimensional matrix A = (al(µ),s(λ),c(µ)

) of the order n is the matrix
λ,µA+ satisfying to the following equalities:

λ,µ(A λ,µ(λ,µA+ A)) = A, (6)
λ,µ(λ,µA+ λ,µ(A λ,µA+)) =λ,µ A+, (7)

λ,µ(A λ,µA+) and λ,µ(λ,µA+ A) are symmetrical matrices. (8)

The following theorem shows that MP (0, µ)-inverse matrix 0,µA+ gives the solution
to the least squares problem for the following multidimensional-matrix equation:

0,µ(A(µ,0,µ)X(µ,0,0)) = B(µ,0,0). (9)

Theorem 2. Let the equation (9) with (2µ)-dimensional matrix A = (alµ,cµ) =

A(µ,o,µ) is solved and 0,µA+ =0,µ A+
(µ,o,µ) is the MP (0, µ)-inverse matrix to the matrix

A(µ,0,µ). The matrix X =0,µ (0,µA+B) provides the minimal value of the Euclidean
norm ||0,µ(AX)−B|| and has the minimal Euclidean norm ||X|| .

Theorem 3. The matrix λ,µA+ (6), (7), (8), MP (λ, µ)-inverse to the symmetrical
(λ+2µ)-dimensional matrix A = (al(µ),s(λ),c(µ)

) of the order n is the (λ, µ)-inverse matrix
λ,µA−1

s (5).
The converse to theorem 3 statement is also true: the symmetrical (λ, µ)-inverse

matrix λ,µA−1
s (5) satisfies the conditions (6), (7), (8), i.e. it is the MP (λ, µ)-inverse

matrix λ,µA+.
Thus, the symmetry of the matrix A is the necessary and sufficient condition for

the equality λ,µA+ =λ,µ A−1
s .

The algorithm for finding the MP (λ, µ)-inverse matrix is as follows: 1) the
twodimensional matrix (λ, µ)-associated with the inverting (λ+2µ)-dimensional matrix
A is formed; 2) the MP inverse matrix to the associated matrix is found; 3) the inverse
transformation is performed from the twodimensional MP inverse matrix to the MP
(λ, µ)-inverse matrix.

Many programming systems have the programs for finding the MP inverse matrix.
This is the function pinv in the Matlab programming system.

4 Example

The need to use the MP (λ, µ)-inverse matrix arises in the multidimensional-matrix
polynomial regression analysis to estimate the coefficients of the
multidimensional-matrix polynomials regression with the following mathematical
model of the measurements [7]:

yo,i =
m∑
k=0

0,kq(xkiC(kq,p)) + εi, m = 0, 1, . . . , i = 1, . . . , n,
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by the measurements (xi, yo,i), where the input variable x is the q-dimensional matrix,
the output variable (response) y is the p-dimensional matrix, the coefficient C(kq,p) is
the (kq+ p)-dimensional matrix, xi are the measurements of the input variable x , yo,i
are the measurements of the response yi with errors.

The estimations Ĉ(kq,p) of the coefficients C(kq,p) are defined as the solution to the
following system of the multidimensional-matrix linear equations relative the C(kq,p) [7]:

m∑
k=0

0,kq(sxλ+kC(kq,p)) = sxλy, λ = 0, 1, . . . ,m, (10)

where

sxλ+k =
1

n

n∑
i=1

xλ+k
i , sxλy =

1

n

n∑
i=1

xλi yo,i.

The diagonal elements sx2 , sx4 , sx6 , . . . of the cell of the system (10) are the symmetrical
(0 + 2kq)-dimensional matrices, and associated matrices to the sx4 , sx6 , . . . are singular
one. The need to inverse these matrices arises when solving the system by the
elimination Gauss method.
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1 The Method of Estimation of Parameters of

Nonlinear Feedback Shift Registers

1.1 Feedback Shift Registers

Feedback shift registers (FSRs) are effective tools for generating pseudorandom
sequences, widely applied in cryptography, hardware testing, data compression, and
other fields. FSRs are categorized into two main types. Linear feedback shift registers
(LFSRs) determine their state through a linear function of previous states. They
are simple to implement, but lack sufficient cryptographic strength. LFSRs are well
studied with established theoretical foundations. Consequently, nonlinear feedback
shift registers (NLFSRs), which generalize LFSRs by using nonlinear transformations
of previous states, are of greater practical interest due to their enhanced cryptographic
security.

An FSR consists of n binary storage cells, each holding one bit. Each cell i is
associated with a state variable xi, representing its current value, and a feedback
function f , which determines the updated value of bit i. The state of an FSR can
be represented as a vector of its state variables (x0, x1, . . . , xn−1). The period of an
FSR is defined as the length of the longest repeating output sequence it can produce.
The value of the cell number 0 determines the output of the FSR, while the input is
defined by the value of the cell number n− 1.

An FSR is classified as an LFSR if it employs only linear feedback functions (i.e.,
f(x0, x1, . . . , xn−1) = c0x0⊕c1x1⊕· · ·⊕cn−1xn−1). Otherwise, it is an NLFSR. Nonlinear
feedback functions have been extensively studied. For example, in [1] a list of n-bit
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NLFSRs with optimal periods of 2n− 1 is provided. The study considered three types
of feedback functions with algebraic degree two:

• f(x0, x1, ..., xn−1)) = x0 ⊕ xa ⊕ xb ⊕ (xc · xd),

• f(x0, x1, ..., xn−1) = x0 ⊕ xa ⊕ (xb · xc)⊕ (xd · xe),

• f(x0, x1, ..., xn−1) = x0 ⊕ xa ⊕ xb ⊕ (xc · xd)⊕ (xe · xh),

where 0 ≤ a, b, c, d, e, h < n.
These functions were analyzed earlier in [2], although not all optimal-period

feedback functions were listed. A new method to construct such functions is proposed
in [3], completing the lists for the above types. Furthermore, in [4] a new type of
NLFSR feedback function with optimal periods for 8 ≤ n ≤ 23 is introduced:

f(x0, x1, ..., xn−1) = x0 ⊕ xa ⊕ xb ⊕ xc ⊕⊕xd ⊕ xe ⊕ xh ⊕ (xw · xz),

where 0 ≤ a, b, c, d, e, h, w, z < n. This function has an algebraic degree of two, as
the largest product term involves two variables. The authors of [4] identified 639 new
NLFSR feedback functions with optimal periods, summarized in Table 1.

Table 1
Number of new NLFSR feedback functions with optimal periods

n Number of Functions n Number of Functions
8 12 16 84
9 12 17 70
10 34 18 44
11 26 19 23
12 64 20 24
13 64 21 17
14 76 22 12
15 70 23 7

Total 639

This study focuses on performing methods from [2] to these new functions.

1.2 Algorithm of Estimation of parameters of Shift Registers
Using Markov Chains

Analyzing the behavior of new type NLFSRs, characterized by complex feedback
functions, requires methods that account for the generators determinism and hidden
dependencies between state bits. A Markov chain model of order s with r partial
connections (MC(s, r)) approximates the generators dynamics while minimizing the
number of model parameters. The key assumption is that the probability of the current
state depends on a subset of r significant states from a history of length s.
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In [5] an algorithm for estimating MC(s, r) parameters is proposed. This algorithm
constructs an estimate of the one-step transition probability matrix Q, which can be
used to build the truth table of a Boolean function. The matrix Q has dimensions 2r×2,
with rows containing probabilities of generating 0 or 1 based on history xt−1, . . . , xt−s.
The Boolean function is derived from the second column of Q, where, for an undistorted
generator, the rows are (0, 1) or (1, 0).

To develop an algorithm for estimating NLFSRs based on the MC(s, r) model, the
following parameters must be determined:

• the optimal Markov chain order s, representing the history length needed to
describe the registers dynamics;

• the number of significant connections r, minimizing the number of bits required
to reconstruct the registers behavior;

• the template M of significant bits, indicating which history bits have the most
influence on transitions.

The algorithm proceeds as follows:

1. Data preparation. Generate sequences of length T using the feedback function.

2. Parameter Estimation. Apply the MC(s, r) parameter estimation algorithm to
estimate the order s, the number of significant connections r, the template M
and the transition matrix Q.

3. Truth Table Construction. List all possible 2r states of the significant bits in
the history based on M . Compute the output for each history to form the truth
table.

4. Algebraic Normal Form (ANF) Recovery. Express the Boolean function f as
f(x0, x1, ..., xr) = c0 ⊕ c1x1 ⊕ · · · ⊕ c12x1x2 ⊕ · · · . Using the truth table, derive
the ANF via the method of undetermined coefficients, which should match the
original feedback function.

2 Computational Experiment

The computational experiment aims to verify the effectiveness of the proposed
algorithm for recovering NLFSR feedback functions by analyzing generated sequences.
The main tasks include:

• generating sequences of specified lengths for various NLFSRs;

• estimating the order s, the number of significant connections r, the template M
and the transition matrix Q using the MC(s, r) parameter estimation algorithm;

• recovering the ANF of feedback functions;
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• analyzing the results.

The experiment considered five NLFSRs, each defined by its feedback function fi,
register size s, number of connections r, and template M . The parameters are listed
in Table 2. For each NLFSR, three sequences of length T = 4000 bits were generated.
Initial register states were chosen randomly to ensure input diversity. Sequences were
generated using the feedback function, computing the next bit and shifting the register
at each step.

Table 2
Parameters of shift registers and estimation algorithm

Register s r rmin rmax

f1 17 6 4 7
f2 24 7 5 8
f3 17 9 7 10
f4 8 7 5 8
f5 23 8 6 9

The implemented algorithm for recovering NLFSR parameters consists of the
following steps:

1. Generate a bit sequence of length T using the feedback function and initial state.

2. Extract (s+ 1)-grams representing state transitions.

3. Count the frequency of each (s+ 1)-gram to estimate transition probabilities.

4. Apply the A3 template reduction algorithm [5] to evaluate templates M for orders
from rmin to rmax, maximizing mutual information Ir+1. Start with the maximum
order and iteratively reduce it to select the optimal template.

5. Compute the transition probability matrix Q based on the selected template.

6. Form the truth vector from Q and compute the ANF of the feedback function.

The experiment was conducted for all five NLFSRs. For each register and its
three sequences, the A3 algorithm [5] correctly identified the order r, template M ,
and accurately recovered the ANF of the feedback function. Figure 1 illustrates the
program output during the recovery of function f1.

Previous study [2] found that a sequence length of T = 1000 bits was sufficient
for recovering simpler feedback functions described in [1]. However, for the new-type
NLFSRs, a longer sequence of T = 4000 bits was necessary due to the exponential
growth in the number of contexts 2r. The number of observations per context
is approximately T/2r. For accurate probability estimation, this number must be
sufficiently large. The standard error for a binomial probability p is

√
p(1− p)/N ,

where N is the number of observations. For p = 0.5, the error is 0.5/
√
N , requiring

N ≥ 25 for an error less than 0.1. Consider examples for two NLFSRs:
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Fig. 1. Recovery of the feedback function by the implemented program

• For f1 with s = 17, r = 6, at T = 1000, the number of (s+1)-grams is T−s = 983,
with 2r = 64 contexts, yielding 983/64 ≈ 15.36 observations per context. This
is insufficient for reliable estimation. At T = 4000, the number of (s + 1)-grams
is 3983, yielding 3983/64 ≈ 62.23 observations, which, though below 100, proved
sufficient for recovery.

• For f5 with s = 23, r = 8, at T = 4000, the number of (s+1)-grams is 3977, with
2r = 256 contexts, yielding 3977/256 ≈ 15.54 observations, which is acceptable.
Increasing T further improves accuracy.

For NLFSRs with large s and r, such as f2, the number of possible templates grows
significantly. For example, with s = 24, r = 8, the algorithm evaluates

(
23
7

)
= 245157

templates, requiring substantial data for accurate template selection based on mutual
information.
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This paper analyzes the evolution of import intensity in Chinese domestic
production across 18 economic sectors (1981–2018). Using Dynamic Time
Warping (DTW) time-series clustering on annual input-output tables via the
dtwclust R package, we identify four distinct temporal patterns of import
dependence. As a pilot study using estimated import matrices derived via
the proportionality assumption, these findings provide preliminary insights into
China’s sectoral import intensity dynamics.
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model; structural change; time series clustering.

1 Introduction

China’s extraordinary economic expansion over recent decades remains a major subject
of economic inquiry (e.g., [1]). Among the analytical frameworks employed to examine
this development, input-output analysis has been utilized by researchers (e.g., [2; 3]).

This paper examines the evolution of import dependency across Chinese economic
sectors during this period, as revealed by input-output tables. Quantifying sectoral
reliance on foreign inputs is crucial not only for understanding growth patterns but also
for modeling the impact of global value chain disruptions (e.g., from natural disasters
or geopolitical events) and assessing national exposure to foreign supply shocks.

2 Data

This paper utilizes the China Time-Series Input-Output Tables (1981–2018) [4],
developed by researchers at Renmin University of China’s School of Applied Economics.
These annually compiled tables, valued at current producer prices, cover 18 sectors
under a consistent classification: one agricultural, ten industrial, one construction, and
six service sectors. The methodology aligns with China’s National Bureau of Statistics
(NBS) practices and adheres to the competitive import assumption.

A key limitation is the aggregation of interindustry flows without distinguishing
domestic and imported components. While methodologically sound within the
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classical Leontief framework, this contrasts with practices in many other countries.
Disaggregating imports is essential for advanced analyses, such as tracing imported
goods within the economy, calculating sector-specific import intensity of domestic
output, modeling price transmission from imported intermediates, and assessing
multiplier effect leakage abroad.

Theoretically, the tables follow Approach A in input-output methodology [5,
P. 142–151], where import disaggregation requires indirect estimation or supplementary
data. From Leontief’s perspective, approximation methods are mathematical exercises
rather than substitutes for empirical data. Nevertheless, in the absence of primary
statistics, estimation remains a pragmatic tool for generating preliminary insights.

3 Method

The data analysis workflow comprised the following sequential procedures:

A. Data Preparation

1. Conversion of source data (The China Time-Series Input-Output Tables) from
.xlsx to .RData format, including necessary preprocessing.

B. Input-Output Matrix Construction

2. Derivation of the 18×18 direct input coefficients matrix (A) as A = ZD−1
x , where

Z is the transactions matrix and D−1
x is the diagonal matrix with the reciprocals

of sectors’ gross outputs (x−1
j , j = 1, . . . , 18) along its diagonal.

3. Construction of the 18×18 direct import coefficients matrix (Am) using the
proportionality assumption: am,ij = aij × (mi/zi), where mi represents total
imports and zi denotes total sectoral transactions for commodity i.

4. Computation of the 18×18 domestic direct input coefficients matrix (Ad) as Ad =
A−Am.

C. Import Intensity Analysis

5. Calculation of the Leontief inverse matrix: L = (I − Ad)
−1, where I is 18×18

identity matrix.

6. Determination of sectoral import intensity (total import content of domestic
output) for each year (1981–2018) via row-wise summation of the matrix product
AmL.

D. Temporal Pattern Analysis

7. Time-series clustering via Dynamic Time Warping (DTW) using the dtwclust R
package (v.5.5.3; type = "partition", distance = "sbd", k = 4) [6–8].

8. Graphical representation of clustering results: temporal trajectories of sectoral
import intensity with cluster centroids.
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Fig. 1. Time series clustering results with centroids

4 Results

Time-series clustering identified four distinct import intensity trajectories (Figure 1):

1. Sustained growth: Steady increase from 5% to 20–25% (avg.).
Sectors: Mining; Food/tobacco; Petroleum/chemicals; Non-metallic minerals;
Metals; Utilities.

2. Moderate growth: Progressive rise to 8% (avg.).
Sector: Agriculture/forestry/fisheries.

3. Volatile trend: Alternating periods of increase and decrease.
Sectors: Other manufacturing/repair; Wholesale/retail.

4. Inverted U-shape: Peak 2007–2008, followed by decline.
Sectors: Textiles/apparel; Wood/paper/printing; Machinery/equipment;
Construction; Transport/warehousing; IT services; Finance/real estate; R&D;
Other services.

5 Discussion

This study presents a preliminary, data-driven exploration of import intensity
dynamics. Given the estimated nature of the import matrices (derived via
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proportionality rather than direct observation), the identified clusters should be
interpreted as indicative patterns, not definitive truths. Future research should
rigorously test the sensitivity of results to alternative clustering parameters (e.g.,
distance metrics, number of clusters) and, critically, seek validation using empirically
observed import flow data where available.
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The paper investigates a two-sample test based on multivariate ranks. Using
the multivariate rank map, we transport the initial sample onto a polar grid. Then
we find the polar ray with the maximal number of points of the first sample. Using
it, we construct the test statistic. A limit theorem for this statistic is proved,
and a Poisson approximation is established via Sevastyanov theorem. Finally,
the proposed test is compared against existing multivariate two-sample tests.
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1 Introduction

Nonparametric two-sample tests are essential for assessing distributional homogeneity
without parametric assumptions. In one-dimensional settings, a convenient
nonparametric approach is to use ranks, but a direct extension to multivariate data
is not straightforward. Chernozhukov [1] constructed a multivariate analog of ranks
via optimal transport. In this work, we develop a multivariate two-sample test that is
based on these ranks. The method assigns multivariate ranks by optimally transporting
sample points to a structured reference grid composed of rays and concentric circles.

Let us formally define the optimal transport plan and multivariate ranks. Consider
the sample points {xi}ni=1, each carrying the unit mass, and denote by A = {yj}nj=1 a
fixed reference multiset in Rd. We seek the transport plan Σ = (σi,j)i,j≤n that minimizes
the total cost

T =
n∑
i=1

n∑
j=1

σi,j ρ(xi, yj),

subject to the marginal constraints

n∑
i=1

σi,j = 1,
n∑
j=1

σi,j = 1, σi,j ≥ 0,

where σi,j is the mass transported from xi to yj and ρ(·, ·) is the chosen distance
metric. Under mild conditions on ρ and A, an optimal plan exists that induces a
bijection between {xi} and {yj}. The multivariate rank of xi is then defined as its
image under the transport map.

The reference grid A itself consists of evenly spaced rays half-lines emanating from
the origin and circles with increasing radii.
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To test the null hypothesis of the two-sample problem, we first pool the two
independent samples into one combined dataset. Applying the optimal transport map,
we send each pooled point to a node on our reference grid. We then count the number
of first-sample points assigned to each ray and use the largest of these values as our test
statistic. It should be noted that this test is not effective for the general alternative,
so we consider the particular alternative.

2 Model

Let X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ G be independent samples with cumulative
distribution functions F and G on Rd. We test the null hypothesis

H0 : F = G,

against the alternative hypothesis

H1 : E[X] 6= E[Y ].

Let Q be the radial grid with

a =
⌊√

n+m
⌋

rays, b =

⌊
n+m

a

⌋
points per ray.

We construct a correspondence between points of the joint sample and points of Q via
an optimal transport plan. We denote the number of observations from the first sample
assigned to ray i by Xi,n. Consider the case n = m for simplicity. Then under H0 we
have

Xi,n ∼ HyperGeom(2n, n,
√
n),

and our test statistic is then given by

Tn = max
1≤i≤

√
n
Xi,n.

Fig. 1. Result of transporting the combined sample from N ((0, 0), E) and N ((1, 1), E) (20
points each), where E denotes the 2× 2 identity covariance matrix.

We choose as the test statistic the maximum number of sample points on any ray.
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3 Main Results

Theorem 1. Under the null hypothesis H0 there exists the sequence {xn} such that

P
(
Tn ≤ xn

)
→ e−λ,

√
n∑

i=1

I{Xi,n > xn}
d−→ Poisson(λ), n→∞,

where

λ =
1

s
√

2π
.

Here

xn =

√
n

2
+ yn

n1/4

2
,

where yn is the unique solution of the equation

y2
n + 2 ln yn = lnn+ 2 ln s. (1)

So, for a given significance level α we can determine s, solve the equation (1) to
find yn and compute xn. We then reject the null hypothesis of homogeneity if

Tn > xn.

For small n the p-value can be approximated by simulating the hypergeometric counts
under H0.

In the report, we will present comparisons with well-known criteria and discuss the
sensitivity of the proposed test.
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The problem of forecasting price movements in financial markets using
historical data is a critical challenge in modern quantitative finance. This study
focuses on comparing the effectiveness of machine learning (ML) methods [1],
specifically XGBoost [2], with stochastic approaches based on Markov chains
(MC) [3] and hidden Markov models (HMMs) [4] for predicting the direction of
stock price changes in the S&P 500 index. Theoretical and empirical analyses are
conducted, including data preprocessing, model implementation, and accuracy
evaluation using classification metrics. The results provide insights into the
strengths and limitations of each method, along with recommendations for future
research. The research is partially supported by the National Science Foundation,
Grant No. F23Uzb-080.
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1 Introduction

Modern financial markets are characterized by high volatility and complexity,
necessitating advanced tools for analyzing and predicting price movements [5]. A
key challenge in this domain is developing reliable models capable of forecasting
price directions based on historical data. With the exponential growth of data and
technological advancements, machine learning (ML) and stochastic methods [6] —
such as Markov chains (MCs) and hidden Markov models (HMMs) — have gained
prominence in financial time series forecasting.

The relevance of this study stems from the demand for robust predictive models
to support investment decisions under uncertainty. While numerous methods exist for
financial data analysis, hybrid and comparative approaches are increasingly adopted
to evaluate the efficacy of different model classes. Specifically, the comparison between
deterministic ML techniques (e.g., XGBoost) and probabilistic methods (e.g., MCs and
HMMs) for short-term stock price direction forecasting remains an active research area.

The problem is well-studied in different scientific societies. ML methods, including
XGBoost, have demonstrated high accuracy in classification and regression tasks, while
MCs and HMMs remain widely used for time series analysis and stochastic process
modeling. However, a comprehensive comparison of these approaches on a unified
dataset and task is still lacking, underscoring the significance of this research.

The primary goal is to compare the performance of ML-based (XGBoost), MC, and
HMM methods in predicting the direction of S&P 500 stock price movements.
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2 Markov chain models

Let (Ω,F , P ) be a probability space, where {Xt}Tt=1 is a sequence of random variables
taking values in a finite state space S = {s1, . . . , sk}. A Markov chain is a stochastic
process satisfying the Markov property: P (Xt+1 = xt+1 | Xt = xt, . . . , X1 = x1) =
P (Xt+1 = xt+1 | Xt = xt).

For financial applications, we typically consider: discrete-time processes with t
representing trading days; finite state space S = {down, neutral, up}; homogeneous
chains with time-invariant transition probabilities.

The behavior of a first-order Markov chain is characterized by its transition
probability matrix P = [pij]k×k where: pij = P (Xt+1 = sj | Xt = si),

∑k
j=1 pij = 1.

For financial time series, states are typically defined via price return thresholds:

• s1: Return < −0.5%;

• s2: −0.5% ≤ Return ≤ 0.5%;

• s3: Return > 0.5%.

The maximum likelihood estimator for transition probabilities is p̂ij =
Nij∑k

m=1 Nim
,

where Nij counts observed transitions si → sj.
A second-order Markov chain extends the dependency to two previous states:

P (Xt+1 | Xt, Xt−1, . . . , X1) = P (Xt+1 | Xt, Xt−1).

This requires a transition tensor P (2) = [pijl] where: pijl = P (Xt+1 = sl | Xt =
sj, Xt−1 = si).

The estimation becomes: p̂ijl =
Nijl∑k

m=1 Nijm
; Nijl counts sequences si → sj → sl.

3 Machine learning methods

3.1 XGBoost framework

We consider the classification of financial time series using a machine learning approach
based on gradient boosting. The goal is to predict the directional movement of
asset returns using observed heterogeneous features such as lagged returns, volatility
indicators, and technical metrics.

Let x1, x2, . . . denote the observed financial features, and suppose we model the
output (e.g., direction of return) via an ensemble method. We employ the XGBoost
algorithm (eXtreme Gradient Boosting), a regularized gradient boosting framework.

The XGBoost method optimizes a regularized objective function of the form:

L(φ) =
n∑
i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk), (1)

where l(yi, ŷi) is a differentiable loss function (e.g., log-loss for classification), and
Ω(fk) = γT + 1

2
λ‖w‖2 + α‖w‖1 is a regularization term controlling model complexity.
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To build each tree ft at iteration t, XGBoost uses a second-order Taylor
approximation of the loss:

L(t) ≈
n∑
i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft), (2)

where gi and hi are the first and second derivatives of the loss with respect to the
previous prediction ŷ

(t−1)
i .

3.2 Hidden Markov models for regime-switching

Hidden Markov Models (HMMs) provide a probabilistic framework for modeling
financial time series with latent regimes (e.g., bull or bear markets). They assume
that the observed data is generated by an underlying unobserved Markov process.

The HMM is defined by parameters λ = (S,A,B, π), where: S = {s1, ..., sN} –
hidden market regimes (states); A = {aij} – transition probabilities between states;
B = {bj(ot)} – emission probabilities of observed returns/features; π – initial state
distribution.

The model assumes the Markov property:

P (qt | qt−1, ..., q1) = P (qt | qt−1), P (ot | qt, ot−1, ...) = P (ot | qt). (3)

HMMs offer a powerful tool for identifying latent market regimes, capturing structural
changes in time series, and improving interpretability in financial modeling. They are
especially suitable for regime-switching trading strategies and volatility forecasting.

4 Results of comparative analysis

Let {Pt}Tt=1 be a sequence of daily closing prices for S&P 500 constituent stocks from
2013-2018, where: T = 1, 508 – trading days; N = 505 – unique stocks; returns are
calculated as rt = (Pt − Pt−1)/Pt−1.

The target variable yt ∈ {0, 1, 2} represents:

yt =


0 if rt < −0.5%

1 if − 0.5% ≤ rt ≤ 0.5%

2 if rt > 0.5%

(4)

XGBoost configuration:

L =
n∑
i=1

[yi ln pi + (1− yi) ln(1− pi)] + γT +
1

2
λ‖w‖2. (5)

Markov models:

• First-order MC: P = [pij], pij = P (yt = j|yt−1 = i);
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• Second-order MC: P = [pijk], pijk = P (yt = k|yt−1 = j, yt−2 = i);

• HMM: λ = (A,B, π) with 3 hidden states.

The classification performance is evaluated by indicators called accuracy and
F1-score. Results for comparison are presented in Table 1.

Table 1
Model Performance Comparison

Model Accuracy Balanced Accuracy F1-score
XGBoost 0.730 0.740 0.740
1st-order MC 0.400 0.370 0.360
2nd-order MC 0.400 0.350 0.300
HMM 0.546 0.541 0.545

5 Conclusion

Summarizing the comparative analysis results, we have: XGBoost demonstrates
superior predictive accuracy across all market regimes; HMM provides interpretable
regime detection but with lower accuracy; traditional Markov chains showed in the
experiments limited predictive power. Robustness analysis can be performed using the
approach from [7].
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The paper addresses the issue of extracting signals from noise using singular
spectrum analysis (SSA). We propose an algorithm that automatically selects
significant modulated harmonics without specifying their periods. This algorithm
relies on the Monte Carlo SSA criterion to identify the significant frequencies,
which are then extracted.
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1 Introduction

Consider the following model: X = S + R, where X = (x1, . . . , xN) is the observed
time series, S is the signal and R is the noise, i.e., the realisation of some stationary
process. This paper considers two problems: signal detection and signal extraction in
cases where the signal is present.

To solve the first problem, we use the Monte Carlo SSA (MC-SSA) [2] method,
which tests the hypothesis H0 : S = 0. The second problem is solved by applying
singular spectrum analysis (SSA) [4; 7], which decomposes the series into elementary
components. After grouping these components, we obtain a decomposition of the series
into trend, periodic components, and noise. As one of the SSA steps involves visual
analysis to identify the signal components, there is a need to automate this step. This
problem has been addressed in works such as [1; 3; 6; 8], which are mainly devoted to
trend extraction or smoothing. This paper aims to define an approach to the automatic
extraction of weak oscillating signals detected by the MC-SSA criterion.

2 The autoMCSSA algorithm

Let us introduce some notation and assumptions.
The proposed algorithm uses a modified version of MC-SSA that corrects for

multiple comparisons [5]. Sine waves with equidistant frequencies ωk = k/(2L),
k = 1, . . . , L, were chosen as the projection vectors needed to construct the criterion
statistics. With this choice of projection vectors, we can identify significant frequencies
present in the signal.

For a series X of length N and 0 6 ω1 6 ω2 6 0.5, we will use the same frequency
measure used in [1] for trend extraction. Let the measure T (X;ω1, ω2) reflect the

214



contribution of frequencies from the interval [ω1, ω2) calculated from the periodogram
of the series.

Input: time series , signal estimate ,

Testing hypothesis of signal absense in 
 using MC-SSA

New signal estimate  using SSA  applied
to series : leading components with

Output: signal
estimate 

 is not rejected

 is rejected

Determining the most significant frequency ,

Parameters:  , 
, 

Fig. 1. Flowchart of autoMCSSA

Figure 1 shows the flowchart of the autoMCSSA algorithm. It consists of applying
the MC-SSA criterion sequentially until the hypothesis is no longer rejected. If the
hypothesis is rejected at the next iteration of the algorithm, the most significant
frequency ω? is determined and a new signal estimate is calculated using SSA applied
to the original series: for each frequency ω from the set of significant frequencies Ω?,
the leading components with a measure T exceeding the threshold T0 are selected.
Once the null hypothesis is no longer rejected, the algorithm terminates, with the final
signal estimate being given by S̃ .

We will estimate the frequency ω? using a weighted average of the nearest significant
frequencies, where the weights are determined by the frequencies’ significance. This
estimation method enables us to obtain a more accurate estimate of ω in cases when
it does not fall on the k/(2L) frequency grid.

Let us consider an example of the work of the proposed algorithm. Let X = S + ξ,
where ξ is the AR(1) model with parameters φ = 0.7 and σ2 = 1, N = 200, S =
(s1, . . . , sN),

sn = 0.075 e0.02n cos(2πn/8) + 2 cos(2πn/4) + 0.2 · (−1)n.

Figure 2 shows the first 15 elementary components reconstructed using SSA. The
signal corresponds to components with indices 1, 2, 5, 6, and 13. Without knowing
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Fig. 3. Estimated signal using autoMCSSA (L1 = 50, L2 = 100, δ = 1/80, T0 = 0.5)

the formula by which this signal is generated, it is difficult to say with certainty which
components are non-random, since the components (3, 4) and (11, 12) look like pairs
of harmonics. We applied the autoMCSSA algorithm to this series and found that
the developed method correctly identified the components corresponding to the signal.
Figure 3 shows the signal S and its estimate by the autoMCSSA method.

3 Conclusion

The paper proposes an algorithm capable of extracting only the significant time
series components without specifying the period of a periodic component. Multiple
modulated periodic components may be present, each with different amplitude
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modulation.
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When assessing the risk of transactions, companies or financial and credit
organizations have a question about the specifics of this procedure in relation to
interconnected companies that are part of a conglomerate or have any obligations
to other market participants. We considering a problem of assessing contractor
connections using big data sets.
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In the case of interconnected companies, it makes sense to start with the general
rating of the group of participants to which it relates in accordance with the preliminary
assessment. It is necessary to determine the significance of such an entity in the
conglomerate, that is, this task can be solved by assigning it to one of the specified
categories:

1. A managing or significant company that owns the largest amount of assets
of the community in question or the largest revenue among its members;

2. A dependent company, i.e. a company of the group in question that does not
have a significant amount of assets, whose creditworthiness depends on the entire
group, at least the balance of payments of the latter has a significant impact on
this type of enterprise.

The links between companies are hidden and the nature of the relationship is not
advertised, but with sufficient data, we can characterize, if there are large data sets,
the activities of the counterparties in question over several periods of time. In this case,
we used a data set that characterized the activities of 100 similar counterparties for 8
months of 2023. We had assumptions about the connection of some of them, and using
standard procedures, we confirmed the connection of their business activities, which
allowed us to adjust the scoring assessments and affected the possibilities of issuing
them credit funds in the future.

To operate this information within the framework of analytical procedures and
make initial conclusions characterizing the dynamics of the industry or market under
consideration, it is necessary to conduct a classification for the purpose of further
studying groups of such entities with common quantitative characteristics. As the
simplest and most obvious solution at the first stage, an algorithm for constructing an
interval variation series was used using the Sturges formula as a tool for classifying
the obtained values of the dynamics of economic activity.

Based on the table data, Xmin = 0.54 million rubles and the maximum, as the upper
limit - Xmax = 6.55 million rubles.
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The variation range in this case will be R = 6.01. According to the calculations,
the following optimal interval duration is obtained: H = 0.7863. This means that our
values will be divided into 8 groups for further analysis of frequencies and distribution.

Based on the data obtained, the image of the objective picture in the sample
under consideration can be displayed as a polygon of the distribution of values by
the enterprises of the studied market (Figure 1). In this case, the asymmetry of the
tails of the polygon under consideration is obvious, as well as the shifts in the central
part of the graph, such a situation requires a more detailed further interpretation.

Fig. 1. Distribution polygon of enterprise values in the studied market

The obtained results indicate that the largest number of participants belong to the
average range of values, i.e. 32 legal entities are in the range from RUB 2.113 million
to RUB 2.899 million and 26 – from RUB 2.899 million to RUB 3.685 million. The
maximum range included 3 business entities, the minimum – 10. At the same time,
48 companies achieved a value above the average – RUB 2.93 million. More specific
results can be obtained during further stages of the analysis.

It is necessary to pay attention to the nature of the data distribution in our sample;
it is characterized by asymmetry with a shift to minimum values. Thus, we are talking
about the need to search for a factor that influenced business entities. The analysis
should be continued in relation to the cause that caused this situation in the data set.

At the second stage, it is necessary to clarify the significance of the mutual influence
of the companies under consideration on each other. This can be done based on the
application of clustering algorithms. In this case, we will compare the two most
common types and compare the reliability of the results that data clustering gives
based on the calculation of the Euclidean distance between the data in the considered
set and the results that can be obtained using the agglomerative clustering algorithm,
which is calculated based on the Mahalanobis distance formula. The difference between
the algorithms used is in considering the determination between the elements of
the considered data array in the case of agglomerative clustering and the lack of
consideration of dependencies in the case of calculating clusters based on the Euclidean
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distance. In the event of a significant difference in the division of data into clusters, we
will be able to conclude that there are unaccounted factors that affect the elements of
the array, as well as make initial conclusions about the mutual influence of the elements
under consideration and based on this, specify further analysis for the connectivity of
economic activities.

When performing clustering of the data under consideration based on the Euclidean
distance, several assumptions and prerequisites necessary for further classification of
the economic data under consideration were used. The following characteristics were
used to configure the algorithm: 2 clusters (based on empirical assessment), iterations
stopped obtaining equivalent values of distances between groups (Figure 2).

Fig. 2. Results of data clustering based on the calculation of the Euclidean distance using
the nearest neighbor method

Figure 2 shows the clusters formed based on the algorithm under consideration;
because of the implementation, no clear cluster groups were formed, and it is
impossible to draw conclusions about the essential features and interrelationships of
the counterparties considered in the analysis.

When using the agglomerative clustering algorithm, which implies taking into
account the correlation between the data under consideration and, due to this, is
invariant to the scale of the volume of data under consideration, we obtained a picture
that changes based on the fact that when calculating the distance between elements
in this case, the covariance between the elements is taken into account and it is this
type of assessment that will allow for further analysis on the interrelationships of the
elements being assessed (Figure 3).

In this case, we see the division of groups considering the interconnectedness of their
activities and the consistency in the dynamics of the data provided. We cannot clearly
speak about interdependence based only on the implementation of this algorithm for
clustering the obtained data, but at the same time we determine the direction of further
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Fig. 3. Results of data clustering based on the calculation of the Mahalanobis distance using
the nearest neighbor method

analysis. It can be assumed that at the initial stage, companies similar in activity, or
united based on some currently undetected features, ended up in one cluster, which
allows us to make initial conclusions about their interconnectedness and specify further
analytical procedures.
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We discuss connections between relativity principle and measure theory.
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1 Introduction

Measure in mathematics generalizes and formalizes intuitive notions of size: length,
area, volume, as well as mass and probability. These seemingly distinct concepts are
unified through a common mathematical approach and play a key role in probability
theory and integration. The mathematical construct of measure unifies heterogeneous
intuitive concepts (length, probability) via axioms of finite or countable additivity.
However, classical definitions of measure conflict with the principle of relativity in
physics, which denies absolute reference frames as formulated by Galileo and Einstein.
In measure theory, µ(∅) = 0 is a technical condition ensuring additivity. Fixing µ(∅) =
0 resembles choosing an ”absolute zero” for measurements. In physics, this contradicts
the relativity principle, where measurements depend on the reference frame [1; 2].
Example: attempting to define a measure µ(A) = µ(A) + c violates the axiom µ(∅) =
c 6= 0.

2 Interconnection of Vector Spaces and Set

Algebras

Let V = R be a vector space over the field R and F a set algebra. Define a mapping
v : F → V .

Additivity

The mapping v is additive if for disjoint sets A,B ∈ F :

v(A ∪B) = v(A) + v(B).

By definition, v(∅) = 0.

222



Affine Interpretation

The vector space V can be interpreted as an affine space with a fixed reference point
O. Unlike vector spaces, affine spaces lack a distinguished origin [3]. The difference
v(A) − v(B) corresponds to relative displacement between points, aligning with the
relativity principle. If B ⊆ A, then v(A \ B) = v(A) − v(B), defining a relative
”measure of difference.”

Example of Affine Measure Application

Let A1, A2, . . . , An be objects (e.g., players) in pairwise comparisons. Matrix K =
‖Kij‖ contains Kij victories of Ai over Aj. Total matches between Ai and Aj: Kij+Kji.
The pairwise comparison matrix M = ‖Mij‖ is defined as:

Mij =
Kij −Kji

Kij +Kji

, i 6= j.

Diagonal elements Mii = 0. M is skew-symmetric (Mij = −Mji). Assume Mij relates
to parameters via Mij = ai − aj. This is an affine measure model (differences of
measures), where parameters are points in an affine space (object ranks). Matrix
elements M are vectors from point ai to aj. Parameter estimation involves matrix
transformation and structural analysis.

3 Parameter Estimation Algorithm

1. Matrix Transformation: Transform M into M ′. For each row i:

M ′
ij = Mij −Mi1.

This removes dependence on the ”reference point” (first object), analogous to
changing reference frames in physics.

2. Transformed Matrix Analysis: If Mij = ai − aj holds, rows of M ′ will be
identical. For real data, estimate parameters aj as column averages of M ′:

aj =
1

n

n∑
i=1

M ′
ij.

Here, a1 = 0 (reference point).

3. Model Adequacy Check: Compute Pearson correlation coefficients between
rows i and k of M ′.

4 Example

Rating statistical journals based on citations (dataset citations in R package
BradleyTerry2). Transforming M into M ′ (subtracting the first row element) resulted
in nearly linearly dependent rows [4].
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5 Result Interpretation

1. High row correlations: All coefficients near 1 indicate strong linear dependence.

2. Highest correlation r13 ≈ 0.999 signals near-ideal linearity.

3. Lowest correlation remains very high, confirming overall similarity. This validates
the feasibility of affine data analysis models.
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The paper presents the results of research on the use of machine learning
algorithms and neural networks for detecting anomalies in corporate network
traffic. A representative set of test data is used to study the effectiveness
of classification algorithms and their ensembles, as well as algorithms for
detecting abnormal observations in the presence and absence of a training sample,
respectively. It has been established that the use of ensembles of machine learning
algorithms, as well as neural network algorithms, allows achieving high efficiency.
anomaly detection. The results obtained are of practical importance for the
development of systems for detecting and preventing cyberattacks in corporate
networks, and also open up prospects for further improvement of network traffic
protection technologies.

Keywords: cybersecurity; anomaly detection; network traffic.

1 Introduction

The corporate network is crucial for modern organizations, and anomalies due to cyber
attacks can lead to significant economic and reputational damage. Early detection
of threats is key to resilience strategies. Constant monitoring of network traffic helps
identify potential threats, and machine learning algorithms can detect and block attacks
promptly, reducing losses and speeding up recovery.

In Belarus, cybercrimes accounted for over 25% of all registered crimes in 2024 [1].
Similarly, in Russia, financial fraud losses reached 250–300 billion rubles in 2024, with
countermeasures expected to reduce this figure in 2025 [2].

The purpose of this paper is to investigate the effectiveness of using the most
commonly used in various applications machine learning and artificial intelligence
algorithms based on neural networks to solve the problems of anomaly detection in
corporate network traffic. The choice of the most effective algorithms for different
types of cyberattacks is a key aspect in ensuring cyber security and stable operation
of information systems, which determines the relevance of this study.
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2 Algorithms and indicators of their efficiency

The study employs two main algorithm categories: (1) machine learning (classification,
anomaly detection, and ensemble methods) and (2) neural networks for network traffic
analysis.

Classification algorithms (LR, SVM, KNN) require labeled data with two classes
[3; 4]: anomalies/illegitimate traffic and normal traffic. For unlabeled or imbalanced
data, anomaly detection methods are used [5]: One-Class SVM, IF, LOF, and EE.

Ensemble methods include RF, LightGBM, and stacking/blending/bagging [6].
Neural networks comprise FNN, RNN [5], and LSTM [7] architectures.

Optimal hyperparameters for each algorithm were determined through grid
search - an exhaustive parameter tuning method that evaluates all predefined value
combinations. These configurations, set prior to model training, directly impacted
both the learning process and final performance.

The most accurate ML and neural network algorithms were combined into classifier
ensembles. Their performance was evaluated using four key metrics:

• Precision: Ratio of correctly predicted ”traffic anomaly” cases among all instances
classified as anomalies

• Recall: Ratio of correctly identified anomalies among all actual anomaly cases

• F1-score: Harmonic mean of precision and recall (balancing both metrics)

• AUC: Model’s class discrimination ability (1 = perfect classification)

3 Dataset and Methodology

The study employs the CICIDS2017 dataset - a comprehensive benchmark for intrusion
detection containing 2.8 million network records (83% normal traffic, 17% attacks
including DoS and scanning) collected over 5 days. Data preprocessing was performed
using Python 3.11 with pandas and scikit-learn, focusing on feature scaling [8],
categorical encoding, and handling class imbalance through robust metrics.

The methodology follows four key stages:

• Utilizing pre-collected network packet data (originally captured via Wireshark [9])

• Data normalization and feature engineering [10]

• Model training with optimized ML classifiers [11], anomaly detection algorithms
[12], and neural networks [13]

• Comprehensive evaluation using precision, recall, F1-score and AUC metrics
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4 Experimental Study of Algorithm Performance

This chapter presents a comprehensive evaluation of anomaly detection methods in
corporate network traffic, identifying the most promising approaches for practical
implementation. Visual results are summarized in Figure 1 for direct comparison.

Classification Algorithms

• SVM (RBF kernel) demonstrated the highest effectiveness (Precision: 0.8807,
Recall: 0.9430, F1: 0.9107) but required significant computational resources.

• LR and KNN showed lower performance compared to SVM.

Anomaly Detection Algorithms

• One-Class SVM outperformed other methods (Precision: 0.90, Recall: 0.90),
correctly identifying 90% of anomalies with minimal false positives.

• IF, LOF, and EE were trained on a subset with only 5% anomalies, yielding lower
metrics.

Neural Networks

• FNN and LSTM achieved the best results (Recall: 0.943), balancing precision
and recall effectively.

• RNN underperformed due to difficulties with long-term dependencies.

Ensemble Methods

• Blending (SVM + LSTM + RF) achieved the highest performance, with only
3.1% missed anomalies and 2.9% false positives.

• Stacking and LightGBM produced identical results, slightly below blending.

Blending ensembles deliver the best overall results, minimizing both missed detections
and false alarms.
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The paper presents a stochastic model of a cloud computing system in the
form of a G-network with rewards. The purpose of the study is to analyze
and calculate the accumulated reward of a cloud computing system taking into
account the costs associated with damaged, obsolete, or canceled requests. The
reward sequence is formed as a result of the transmission of requests between
network nodes. The results of mathematical modeling allow us to predict the
total expected reward of the queueing model as a function of the remaining time
for a given initial state.
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1 Introduction

Cloud computing systems represent one of the most promising and actively developing
paradigms in the field of distributed computing. Cloud platforms, most famously
Amazon Web Services, Microsoft Azure, and Google Cloud, connect physically
distributed data centers to create a single virtual computing space.

Cluster systems are typically located in a single physical or corporate center (e.g.,
a single data center or campus) and are owned by a single organization. In contrast to
cluster systems, cloud computing platforms and their resources are combined into huge
pools that can be distributed across multiple data centers and even regions. Cloud
providers manage these resources centrally, but users receive an abstraction of the
physical infrastructure, allowing them to use the resources without being tied to a
specific location.

A key element of such systems is virtualization, which allows you to create and
scale virtual machines, containers, or serverless functions. Users are provided with
a high-level virtualized environment that hides the physical infrastructure and allows
dynamic allocation and scaling of resources on demand. Services can automatically
scale according to current needs, allowing them to operate efficiently both during peak
loads and periods of low activity.

At the physical level, the architecture of cloud computing systems includes servers,
data storage systems, and a network that connects computing nodes. Let us define a
model of a cloud computing system using a closed structure queueing network. First,
it is necessary to establish a correspondence between the architecture of the cloud
computing system and the queuing network. We will assign queueing systems to cloud
servers or computing nodes. Each server receives incoming requests and places them
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in a queue for execution. All requests, after being processed by the server, are either
considered fully executed and leave the system, or are distributed to another server
for further processing. The execution of requests and their transmission between the
nodes of the queueing model are specified using the transition probability matrix.
Routing between servers, clusters, and data centers determines the structure of the
queueing network and the existing connections between its nodes. In order to take into
account requests of different types, including corrupted or canceled, it naturally makes
sense to use a generalized queueing network with requests of several types, namely a
G-network. For executing requests, the cloud system receives some reward, usually
payment according to a set tariff, so the model needs to establish a mechanism for
accounting for the reward earned. For this reason, the G-network with rewards is used
as a model in this paper.

2 Model

As a model of a cloud computing system, we consider a closed exponential G-network
composed of a finite set of nodes S0, S1, . . . , Sn. Let K denote the total number of
requests circulating within the network, where each request represents a task being
processed by the system. The node S0 serves as an IS-node, consisting of K identical
exponential servers, and S0 functions as an abstract finit source of requests with
capacity of K requests. The node S0 generates requests only at the moment of request
arriving at its input; the requests it generates load the network of nodes S1, S2, . . . ,
Sn. Suppose that node S0 generates a Poisson flow of arrivals at a rate of λ0k0,
where λ0 is the flow parameter and k0 is the number of customers present at S0. This
incoming flow is divided into two classes of requests. Regular operational tasks are
categorized as positive requests, while corrupted, outdated, or canceled tasks fall under
the negative class. In a small time interval ∆t, the probability of a positive request
arriving is given by λ0k0p

+
0i∆t + o (∆t) and similarly, the probability of a negative

arrival is λ0k0p
−
0i∆t+ o (∆t), i = 1, n, and

n∑
i=1

(
p+

0i + p−0i
)

= 1.

The cloud computing system is modeled by the G-network of nodes S1, S2, . . . ,
Sn. Each node Si operates as a queueing system with identical mi servers and an
unlimited buffer for positive requests. In any small time interval ∆t, the probability
that node Si completes the service of a positive request is µi min(mi, ki)∆t + o(∆t),
where ki is the number of requests currently at node Si, and o(∆t) represents the
probability of two or more requests being completed simultaneously. Moreover, the
events corresponding to the completion of the service at different nodes during time
∆t are mutually independent. The queueing algorithm is FIFO. A serviced request is
immediately transmitted from node Si to node Sj: as a positive request with probability
p+
ij, or as a negative request with probability p−ij. If the request is fully executed, it

leaves the cloud system and is transferred to S0 with probability p+
i0 = 1−

n∑
j=1

(
p+
ij + p−ij

)
,

where i 6= j, i, j = 1, n. Negative requests are not processed by the node servers; they
act as signals. In particular, when a negative request arrives at node Si, i = 1, n, it
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immediately cancels one positive request present at this node. The incoming negative
request and the canceled positive request are immediately routed to the IS-node S0 as
positive requests. Alternative strategies for handling negative requests can certainly
be explored.

The state of the network model under study at time t is represented by a
continuous-time Markov process in the finite state space

k(t) = (k1(t), k2(t), . . . , kn(t)),

where ki(t) denotes the number of requests at node Si at time t. The number of requests

at the IS-node S0 is given by k0(t) = K −
n∑
i=1

ki(t).

Suppose that the system earns R+
ij conventional units (c. u.) when a positive request

transitions from node Si to node Sj, and the system earns R−ij c. u. when a negative

request makes the same transition, i 6= j, i, j = 0, n. We call R+
ij and R−ij the ”rewards”

associated with the transitions of positive and negative requests, respectively, from Si
to Sj [1]. Let us assume that the model receives a reward at rate of R(k, t) c. u. per
unit time it occupies the state k. Let V (k, t) denote the expected total model reward
that the G-network will earn in time t if it starts in the state k. The central question
is: what are the expected total earnings V (k, t) of the model in time t, if the current
state of the network is k.

The main purpose of asymptotic methods in queueing theory is to study the
servicing processes of queueing networks by finding suitable approximations for them
under the specific limit assumption [2]. Cloud computing systems undoubtedly handle
a large number of customer requests. In connection with this, consider the important
asymptotic case of a large number of requests K. The asymptotic technique used
is described in [3; 4]. We use the passage to the limit from a Markov chain k(t)

to a continuous-state Markov process ξ(t) =
(
k1(t)
K
, k2(t)

K
, . . . , kn(t)

K

)
as K tends to be

large [5]. In the context of the asymptotic approximation, we use the notation v(x, t)
to represent the reward density, where x is the initial state and t is the remaining time.
As a result, we obtain a generalized multidimensional Kolmogorov backward equation
with an added earning component q(x, t):

∂v(x, t)

∂t
= −

n∑
i=1

Ai(x, t)
∂v(x, t)

∂xi
+

1

2

n∑
i,j=1

Bij(x, t)
∂2v(x, t)

∂xi∂xj
+ q(x, t), (1)

Ai(x, t) =
n∑
j=1

µj min(mj/K, xj)(p
−
ji − p+

ji + δji)+

+µi min(mi/K, xi)
n∑
j=1

p−ij(1− θ(xj))− λ0

(
1−

n∑
i=1

xi

)(
p+

0i − p−0i
)
,
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Bii(x, t) =
1

K

n∑
j=1

µj min(mj/K, xj)(p
+
ji + p−ji + δji)+

+µi min(mi/K, xi)
n∑
j=1

p−ij(1− θ(xj)) + λ0

(
1−

n∑
i=1

xi

)(
p+

0i − p−0i
)
,

Bij(x, t) =
1

K
µi min(mi/K, xi)

(
p−ij − p+

ij

)
, i 6= j,

where δji is the Kronecker delta, θ(x) is the Heaviside step function.
Equation (1) is not explicitly solvable, so we have to apply a further approximation.

Notice that the diffusion coefficients Bij(x, t) of equation (1) are of order ε. Therefore,
up to terms of order O(ε2), the reward density satisfies the equation:

∂v(x, t)

∂t
= −

n∑
i=1

Ai(x, t)
∂v(x, t)

∂xi
+ q(x, t). (2)

By integrating the equation (2) within a n-dimensional region D we obtain a first
order ordinary linear differential equation for the expected reward VD(t):

d

dt
VD(t) =

n∑
i=1

∂Ai(x, t)

∂xi
· VD(t) +

∫ ∫
. . .

D

∫
q(x, t)dx, (3)

where VD(t) is the expected total reward that the G-network will earn in time t if it
starts in state x, x ∈ D.

Equation (3) serves as a mathematical model of the expected total reward that the
cloud computing system will earn in time t, provided that the start state of the system
belongs to the set D. With the initial condition VD(0) specified, the linear differential
equation (3) completely defines VD(t).
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Consider the problem of testing the hypothesis H0 against the alternative
H1, where the hypothesis H0 is that the tested sequence consists of independent
random variables with a given polynomial distribution, and the alternative
hypothesis H1 corresponds to a scheme of trials in which the distribution of
the tested sequence approaches its distribution under H0. To solve this problem,
we consider four types of statistics, that are generalizations of statistics of tests of
the NIST package and other packages. We present the limiting joint distribution
of statistics of these 4 types and the estimate of the rate of convergence to
this limiting distribution (analogue of Berry-Esseen inequality). We also present
necessary and sufficient conditions for asymptotic independence of the statistics
under consideration.

Keywords: joint distribution of statistical tests; NIST STS; asymptotically
independent statistics; Berry-Esseen-type estimates; limit distributions.

1 Introduction

One of the most famous tools used to test random and pseudorandom number
generators is the NIST statistical test suite [1]. In recent years, many papers have
been published on this topic (e.g., [2–6]).

In this paper we consider four types of statistics, that are generalizations of statistics
of some tests of the NIST package and other packages.

2 Main results

Let ε1, ε2, . . . , εn be random variables, taking values in the set {0, 1, . . . , R − 1}. The
hypothesis H0 is that the tested sequence consists of independent random variables
with a known polynomial distribution, and the alternative hypothesis H1 corresponds
to a scheme of runs in which the distribution of the tested sequence converges to its
distribution under H0.

Let Nlb and Lsb be natural numbers (they are the parameters by which the statistics
Tlb and Tsb will be constructed). We consider the case when Nlb and Lsb are fixed and
n tends to infinity. Put

Llb =

[
n

Nlb

]
, Nsb =

[
n

Lsb

]
.
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If the last n−NlbLlb elements are discarded from the sequence ε1, ε2, . . . , εn, then the
remaining elements may be divided into Nlb ”long” non-intersecting blocks of length
Llb: the first block is (ε1, ε2, . . . , εLlb), the second one is (εLlb+1, εLlb+2, . . . , ε2Llb), etc.
Similarly, we can discard the last n−LsbNsb elements and split the remaining ones into
Nsb ”short” blocks of length Lsb.

Next, fix natural numbers msum,mlb, Ksb and three functions fsum : {0, 1, . . . , R −
1}msum → R, flb : {0, 1, . . . , R − 1}mlb → R and fsb : {0, 1, . . . , R − 1}Lsb →
R. Divide the set of values of the function fsb into Ksb + 1 non-empty disjoint
subsets: fsb({0, 1, . . . , R − 1}Lsb) =

⊔Ksb
i=0 αsb(i). We will use the following notation.

The quantity EH0fsum(ε1, ε2, . . . , εmsum) is the expectation of fsum(ε1, ε2, . . . , εmsum),
calculated under the assumption that the hypothesis H0 is true. The variance
DH0fsum(ε1, ε2, . . . , εmsum), etc., are interpreted similarly. We will be interested
in the case when the numbers R, p0, . . . , pR−1,msum,mlb, Nlb, Lsb, Ksb, the functions
fsum, flb, fsb and the sets αsb(0), . . . , αsb(Ksb) are fixed, do not depend on n, and n is a
changing parameter.

Put

Esum = EH0fsum(ε1, ε2, . . . , εmsum),

σ2
sum = DH0fsum(ε1, ε2, . . . , εmsum)+

+2
msum∑
i=2

covH0

(
fsum(εi, εi+1, . . . , εi+msum−1), fsum(ε1, ε2, . . . , εmsum)

)
,

where it’s supposed that σsum ≥ 0.

Definition 1. If σsum > 0, then a statistic of the form

Tsum =

∑n−msum+1
i=1

(
fsum(εi, εi+1, . . . , εi+msum−1)− Esum

)
σsum
√
n−msum + 1

(1)

is called a summing statistic.

Note that in [4], under the assumption that the tested sequence is binary, statistics
similar to summary statistics are considered.

Put

Wk =

Llbk−mlb+1∑
j=Llb(k−1)+1

flb(εj, εj+1, . . . , εj+mlb−1), 1 ≤ k ≤ Nlb,

Elb = EH0flb(ε1, ε2, . . . , εmlb),

σ2
lb = DH0flb(ε1, ε2, . . . , εmlb) + 2

mlb∑
i=2

covH0

(
flb(εi, εi+1, . . . , εi+mlb−1), flb(ε1, ε2, . . . , εmlb)

)
,

where it is assumed that σlb ≥ 0. Note that EH0Wk = (Llb −mlb + 1)Elb, 1 ≤ k ≤ Nlb.

Definition 2. If σlb > 0, then a statistic of the form

Tlb =

∑Nlb
k=1

(
Wk − (Llb −mlb + 1)Elb

)2

Llbσ2
lb

is called a long-block statistic with Nlb blocks.
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For 0 ≤ j ≤ Ksb put

w(j) =

Nsb∑
i=1

Ifsb(εLsb(i−1)+1,εLsb(i−1)+2,...,εLsbi)∈αsb(j),

Esb(j) = PH0

(
fsb(ε1, ε2, . . . , εLsb) ∈ αsb(j)

)
.

Note that EH0w(j) = NsbEsb(j), 0 ≤ j ≤ Ksb.

Definition 3. If Esb(j) > 0 for all 0 ≤ j ≤ Ksb, then a statistic of the form

Tsb =

Ksb∑
j=0

(w(j)−NsbEsb(j))
2

NsbEsb(j)

is called a short-block statistic with blocks of length Lsb.

Next, for each 1 ≤ q ≤ Qquad fix a natural number m
[q]
sum and a function f

[q]
sum :

{0, 1, . . . , R− 1}m
[q]
sum → R and put

T [q]
sum =

∑n−m[q]
sum+1

i=1

(
f

[q]
sum

(
εi, εi+1, . . . , εi+m[q]

sum−1

)
− E[q]

sum

)
σ

[q]
sum

√
n−m[q]

sum + 1

, (2)

where the quantities E
[q]
sum and σ

[q]
sum are defined in the same way as the quantities Esum

and σsum in (1). The statistics T
[1]
sum, . . . , T

[Qquad]
sum are summming statistics.

Definition 4. Consider a positive integer τquad and real numbers dquad(i, q) (1 ≤ i ≤
τquad, 1 ≤ q ≤ Qquad). A statistic of the form

Tquad =

τquad∑
i=1

(
Qquad∑
q=1

dquad(i, q)T
[q]
sum

)2

(3)

is called a quadratic statistic constructed from the statistics T
[1]
sum, . . . , T

[Qquad]
sum .

The relationship between the summing, long-block, short-block statistics, quadratic
statistics and the statistics from NIST STS [1] and TestU01 was discussed in [5;6]. In
particular, the following was proved with respect to the NIST STS in [5]. Let R = 2
and p0 = p1 = 1

2
. The statistics Tfr, Ttempl of ”Frequency Test within a Block”

and ”Non-overlapping Template Matching Test” are long-block statistics, the statistics
Tlongrun, Tmatrix, Tlincompl of ”Test for the Longest Run of Ones in a Block”, ”Binary
Matrix Rank Test”, ”Linear Complexity Test” are short-block statistics (taking into
account the caveat from Example 7 [5]), the statistics Tmon of ”Monobit Test” is a
summing one, the statistics Truns of ”Runs Test” coincides (under certain additional
conditions) with the summing statistics with an accuracy of up to oP (1), the statistics
Tserial1, Tserial2 of the ”Serial Test” and the statistic Tentr of ”Approximate Entropy
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Test” are such that each of them in a wide class of cases coincides up to oP (1) with
some quadratic statistic.

The report will present the limiting joint distribution of statistics of 4 types
(summing, long-block, short-block and quadratic) and necessary and sufficient
conditions for asymptotic independence of these statistics. In addition, for summing,
long-block and short-block statistics we obtain an analogue of the Berry-Esseen
inequality. The report consists of results from [5;6] and new results.
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The relevance of this research is due to the analysis of web-texts by means
of automatic sentiment analysis. The Apify software product was chosen for the
research and reviews web-texts were used as the studied material. In the course
of the research the positive, neutral and negative opinions were revealed, which
in the future will allow users to identify the best product, and the owners of the
product to increase their credibility.

Keywords: electronic text (e-text); web-text; sentiment analysis; reviews
classification; Apify software.

1 Introduction

With the widespread use of computer technologies and melting of the Internet with the
everyday real life, a new form of existence and interpretation of text in digital media
space has appeared – electronic text (hereinafter –e-text) that acquires new features
and characteristics, presented in new or modified genres and formats.

Nowadays for computer data analysis it is quite natural to consider e-text as a
certain amount of data subject to computer processing. “Text in digital form is
essentially data to be processed” [1, P. 124]. E-text is considered as digital material
encoded as a binary alphabet. “Electronic text can be defined by taking the point
of departure in the digital format in which everything is represented in the binary
alphabet” [2, P. 1]. Another important feature of e-text is the presence of hyperlinks,
which are in any kind of electronic text. As “hypertext can be defined as a coded
relation between anchor, link and destination” [2, P. 4], any coded link and connected
nodes are identified as an essential part of the e-text.

For this study we detail that one of the varieties of e-text is web-texts, which
are typical for online media formed on the Internet, namely: online news papers and
magazines, web sites of news agencies, information portals, news feeds, blogs, etc.
User comments are also can be interpreted as network texts. Based on the above,
it should be supposed that classical methods of text analysis will not be relevant for
the evaluation of text data in the digital environment, because firstly the data are
characterized by large volumes and complex structure (the presence of hyperlinks),
requiring time for evaluation. Therefore, new approaches are appearing for analyzing
e-text through computer technology, involving automation of the processing.
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2 Results of data analysis for reviews sentiment

classification

Manual text tagging nowadays is being replaced by automatic evaluation of sentiment
analysis. Automation is performed with the help of machine learning algorithms [3].
A training corpus of texts with tagged sentiment is selected in advance, and then a
model for classifying texts by sentiment is tested. The electronic texts are tagged with
affective labels (A-labels) for positive, neutral and negative sentiment.

Positive sentiment refers to the expression of positive emotions such as joy, pleasure,
and approval. An example of positive sentiment is a review of a product or service in
which the user expresses his or her positive evaluation.

Neutral sentiment refers to the absence of obvious emotional evaluations. For
example, informational news or documentary content is often characterized by neutral
sentiment.

Negative sentiment is associated with the expression of negative emotions, including
anger, sadness, and disappointment. A negative review of a restaurant or service may
be an example of negative sentiment.

Currently, there is an increased interest in the possibilities of sentiment analysis on
the part of commercial projects that use this technology to study public opinion about
their products and services, namely user comments.

In this study, the Apify software was chosen to analyze web-texts. Sentiment
Analysis Online Tool can analyze the sentiment of any e-text you provide. This tool can
classify positive, neutral or negative sentiment of the text and offers a confidence score
to indicate the certain classification. The software interface is designed in a convenient
way. Using this sentiment analysis tool work the user need to input e-text in the
appropriated space. E-text has to be not longer than approximately 250 characters
(if the text is longer, it will be trimmed), the software processes English e-text. An
artificial intelligence model processes it and gives classification of positive, neutral, or
negative sentiment. There is a confidence score for the presented classification below
the analyzed e-text.

This study examines examples of web-texts with positive, neutral and negative
sentiments to widely demonstrate the performance of the software product. The texts
are comments made by web site users about traveling experience, based on which other
users can find most appropriate options for traveling to different places. The results of
the research in the software product are presented below:
“index”: 0,

“inputText”: “We had an excellent day out at Milford as the night before we visited it had rained &

there were literally scores of waterfalls all through the fiord ... very magical.”,

“finalClassification”: “positive”,

“finalScore”: 0.9839617013931274,

“negativeScore”: 0.0030287420377135277,

“neutralScore”: 0.013009591959416866,

“positiveScore”: 0.9839617013931274.

With the finalClassification score of 0.984, this comment has a positive sentiment.
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The neutral indicator was 0.013 and the negative indicator was 0.003.
Next, the following comment is considered:

“index”: 0,

“inputText”: “NZ$ 225 per pax includes coach return transfer from Queenstown. 100 min cruise on

triple deck ship. Complimentary coffee/tea/hot water. Organised by Real Journeys.”,

“finalClassification”: “neutral”,

“finalScore”: 0.7315853238105774,

“negativeScore”: 0.005336072761565447,

“neutralScore”: 0.7315853238105774,

“positiveScore”: 0.2630786597728729.

Focusing on finalClassification score of 0.732 we conclude that the text has a neutral
sentiment and has only informative character for users. The positive and negative
indicator scores are respectively 0.263 and 0.005.

Consider the following comment with a negative sentiment below:
“index”: 0,

“inputText”: “Viator went to the wrong hotel to pick me up and then told me to take a taxi to outrun

the coach to try to take the boat. What’s worse they charged me for it”,

“finalClassification”: “negative”,

“finalScore”: 0.9004036784172058,

“negativeScore”: 0.9004036784172058,

“neutralScore”: 0.09445048123598099,

“positiveScore”: 0.005145765375345945.

This comment based on the finalClassification 0.900 has a negative sentiment. The
negative connotation prevails over the neutral indicator score of 0.095 and the positive
score of 0.005.

3 Conclusion

Based on the results of Apify software product, comments with positive, neutral and
negative sentiment were found. This methodology of sentiment analysis allows to get
information about emotions and opinions of people on certain topics on the basis of
their comments in social networks, helps to identify problems and defects of the product
and highlight areas for its improvement, as well as to conduct competitive analysis for
the formation of business strategy.
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The two-level approach for testing RNGs involving the well known NIST SP
800-22 test suite, i.e., counting the sequences passing a basic test and checking
the p-values distribution with a chi-square test, was considered. It is shown
that for AES-based sequences two-level testing approach is not reliable. For
a reliable second-level test, systematic error in the computing of the p-values

should be smaller, or at least, approximately equal to σ/N = 1
k

√
k−1
N , where

σ =
√

1
k

(
1− 1

k

)
N . Such heuristic assumptions and carried out experiments

suggest that for example in the second-level test of the Frequency test of NIST
SP 800-22 test suite with n = 220 the number of tested sequences N should not
exceed 26184.

Keywords: random sequences; pseudorandom sequences; statistical testing;
reliability of statistical test; two-sided estimates.

1 Introduction

Random sequences are used in a large variety of areas, such as quantum mechanics,
game theory, statistics, cryptography and so on. Random Number Generators (RNGs)
represent a fundamental component in many applications, they are essential for
cryptographic systems (see, for example, [2]). For any type of RNG statistical
hypothesis tests have been widely employed to assess the quality of the RNG, which
evaluate whether the output sequences conform with the given null hypothesisH0 (e. g.,
the elements of the sequence independent and uniformly distributed) or not.

The quality checking of binary sequences usually is based on some well-known
batteries of tests, each of which is composed of a serial of tests, include Diehard
[1] proposed by Marsaglia, SP 800-22 [5] standardized by US National Institute of
Standard and Technology (NIST) or a software library TestU01 [6, P. 214].

From a mathematical point of view a test may be considered as a function of a
sequence of n elements (e.g., a sequence of n bits) with output value in [0, 1], called
a p-value. In null-hypothesis significance testing, the p-value is the probability of
obtaining test results at least as extreme as the result actually observed, under the
assumption that the null hypothesis is correct.
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2 NIST SP 800-22 test suite

The most commonly used statistical test suite, the SP 800-22 test suite from US
National Institute of Standard and Technology (NIST) [5], is considered. This
statistical test suite is build for analyzing the randomness properties of sequences and
generators, is composed of 15 tests. The purpose of the research is to consider the
testing strategy proposed in Section 4 of the NIST publication [5] and discuss under
which assumptions this strategy increases the reliability and when, on the other hand,
produces incorrect results, i. e. the empirical significance level α does not correspond
to the theoretical one. In that context, a reliable test should be understood as a test
such that the probability of a false positive (Type I error) is agreed with the expected
one.

3 Second-level testing approach

of the NIST SP800-22

In [5] NIST recommends using the second-level testing approach (it was found to
increase the testing capability [3]); a long binary sequence is partitioned into N
subsequences, each with n bits. A standard test is applied for each sequence, and
the distribution of the N obtained p-values is compared with a uniform distribution
F

(0)
p . To check this NIST proposes a chi-square goodness-of-fit test, this test is again

a statistical test and gives another (a second-level) p-value pII .
In every statistical test some approximations are adopted, introducing errors in the

p-value computation and so in the p-value distribution. It was observed [3; 4] that for
extremely large values of N , the level-two approach always fail, it ends with pII ' 0.
In this case we can say that the test is not reliable.

4 Experiments

All 15 tests from the SP 800-22 test suite were applied to pseudorandom sequences
generated by AES block cipher. The detailed description of the design of AES-based
RNG may be found in [7; 8]. The two-level test was performed for all 188 statistics
values computed by NIST test suite, but only 15 of them are presented in the Table 1.
These results confirm that for extreme values of N (e.g., N = 220) the two-level testing
approach was carried out on the sequences obtained by AES algorithm (it is known
that such sequences are practically indistinguishable from random one, see [7; 8]) are
failed too, i.e. it ends with pII ' 0.

In order to identify the problem, let’s take a look on the simple Frequency test.
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Table 1
Results of the χ2-based two-level randomness test by N sequences for the

AES-based RNG (small P-values pII ≤ 0.01 are in bold)

# Test Name N = 103 N = 104 N = 105 N = 220

1 Frequency 0.616305 0.290806 0.588411 0.000803
2 Block Frequency 0.187581 0.773212 0.374097 0.000125
3 Cumulative Sums 0.401199 0.124765 0.959543 0.000009
4 Runs 0.150340 0.885418 0.910568 0.107966
5 Longest Run 0.610070 0.239883 0.000355 0.000000
6 Binary Matrix Rank 0.878618 0.341017 0.000000 0.000000
7 Discrete Fourier Transform 0.371941 0.014836 0.000000 0.000000
8 Overlapping Templ. Match. 0.071177 0.202268 0.000000 0.000000
9 Universal statistical test 0.574903 0.108534 0.000000 0.000000
10 Approximate Entropy 0.246750 0.078038 0.219501 0.000000
11 Serial 0.942198 0.174057 0.213964 0.572679
12 Linear Complexity 0.839507 0.279152 0.299852 0.117305
13 Non-overlap. Templ. Match. 0.092041 0.372782 0.121382 0.275416
14 Random Excursion 0.914727 0.663838 0.346173 0.000028
15 Random Excursion Variant 0.238264 0.133576 0.000080 0.000000

5 Frequency (Monobit) Test

The purpose of the Frequency test is to determine whether the number of ones and
zeros in a sequence are approximately the same as would be expected for a truly random
sequence.

Assuming the bound ε of the error in the computation of a p-value from Berry and
Esseen theorem, we can bound also the maximal error ∆ in the number of N p-values
in k sub-interval and obtain a very simple reliability condition for Frequency Test

∆ <
√
N(k − 1)/k .

In the case ∆ = 2Nε, ε = 9, 3 · 10−4, k = 10 and n = 220, we get

N ≤ 1

4ε2k

(
1− 1

k

)
' 26163.7.

6 Conclusion

The two-level approach for testing RNGs involving the well known NIST SP 800-22 test
suite was considered. Such approach may increase the reliability of the test. However
it is sensitive to the approximation error introduced by the computing of p-values.
Systematic error in the computing of the p-values is dependent only on the accuracy of
approximation of the exact distribution of statistic by its theoretical counterpart and
the number of bits in the analyzed sequences n.

242



References

1. DIEHARD: a battery of tests of randomness. – Access mode:
http://stat.fsu.edu/ geo/diehard.html. – Access date: 25.08.2025.

2. Meneze, A.J., van Oorschot, P.C., Vanstone, S.A. (1996). Handbook of Applied
Cryptography. CRC Press.

3. Pareschi, F., Rovatti, R., Setti, G. (2007). Second-level NIST randomness test for
improving test reliability. Proc. ISCAS 2007. New Orleans (USA). P. 1437–1440.

4. Pareschi, F., Rovatti, R., Setti, G. (2012). On statistical tests for randomness
included in the NIST SP800-22 test suite and based on the binomial distribution.
IEEE Trans. Inf. For. Sec. Vol. 7, No. 2. P. 491–505.

5. Rukhin, A. [et. al.] (2010). A statistical test suite for random and pseudorandom
number generators for cryptographic applications. NIST SP 800-22 Rev. 1a.

6. L’Ecuyer, P., Simard, R. (2013). TestU01. Dept. d’Inform. Rech. Oper. Univ.:
Montreal..

7. Zubkov, A.M., Serov, A.A. (2019). Testing the NIST Statistical Test Suite on
artificial pseudorandom sequences. Matematicheskie Voprosy Kriptografii. Vol. 10,
No. 2. P. 89–96.

8. Zubkov, A.M., Serov, A.A. (2021). A natural approach to the experimental study
of dependence between statistical tests. Matematicheskie Voprosy Kriptografii.
Vol. 12, No. 1. P. 131–142.

243



DETECTING SAMPLE RATIO MISMATCH

WITH SEQUENTIAL TESTING

M.A. Shevtsova1, V.V. Kharlamov2, G.V. Zasko3

1,2,3T-Bank, Applied Statistics Laboratory
Moscow, RUSSIA

e-mail: 1shevtsova1ma@gmail.com, 2vi.v.kharlamov@gmail.com,
3zasko.gr@bk.ru

Online controlled experiments, or A/B tests, are the most reliable method
for evaluating the impact of product changes and making data-driven business
decisions. In A/B tests, unintended deviations from the designed group allocation
ratio can occur. This phenomenon is called a sample ratio mismatch (SRM).
The presence of SRM indicates an issue with the experiment and suggests that
the results may be biased. Early detection of SRM is crucial because it allows
biased experiments to be stopped quickly. In this report, we study the sequential
methods for detecting SRM both theoretically and numerically. Specifically, we
focus on group sequential methods based on the Pearson chi-squared statistic,
as well as sequential methods with a Bayesian alternative. We compare these
methods through numerical experiments, using both real and synthetic data.

Keywords: A/B-testing; sample ratio mismatch; sequential testing.

1 Motivation

Online controlled experiments, or A/B tests, play a key role in data-driven
decision-making in industrial applications [2]. One of the fundamental assumptions
in A/B testing is the randomized allocation of units to variations according to a given
ratio. When this assumption does not hold, the observed and planned ratios may
differ, with the difference being statistically significant. This phenomenon is called a
sample ratio mismatch (SRM) [1]. In online experiments, SRM usually happens due
to network effects, and issues with the randomization process and data filtering.

Note that SRM acts as an indicator that the experiment is biased, which means
that valid statistical inferences cannot be drawn from the results. Therefore, early
detection of SRM is crucial to prevent wrong decisions in the future and minimize
resource losses.

2 Methods

Consider a sequence of independent observations, each belonging to one of the d ≥ 2
variations. Suppose the probability of an observation falling into the j-th variation is
θj > 0, and the vector of true probabilities is θ = (θ1, . . . , θd), and θ is the same for all
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observations. For t ≥ 1 and j ∈ [1, d], define the indicator variable

Ij(t) =

{
1, if the t-th observation belongs to the j-th variation ,

0, otherwise.

Let θ0 = (θ0
1, . . . , θ

0
d) be the target allocation ratio specified in the experimental

design. The problem of detecting sample ratio mismatch (SRM) can be formulated
as a hypothesis testing problem:

H0 : θ = θ0.

Let X(n) be the Pearson chi-squared statistic computed from the first n observations:

X(n) =
d∑
j=1

1

nθ0
j

(
n∑
t=1

Ij(t)− nθ0
j

)2

.

To test H0 against the alternative H1 : θ 6= θ0, one may apply the chi-squared
goodness-of-fit test after the experiment is finished. This approach controls the Type I
error rate and typically has high power, but does not allow SRM to be detected before
the end of the experiment. In industrial applications, the detection of SRM is desirable
as soon as possible. Therefore, we focus on sequential testing procedures, which also
control the Type I error rate but allow to stop the experiment when a sufficient evidence
against H0 accumulates.

Among sequential testing methods, we focus on two approaches. The first approach
groups observations by day, which aligns with how data typically accumulate in many
A/B testing scenarios. This approach is called a group sequential testing.

Let nk be the total number of observations collected during the first k days, and let
X(nk) be the corresponding Pearson statistic. Chi-squared tests apply to X(nk) with
a decreasing significance level αk, controlling Type I errors by ensuring

∑∞
k=1 αk ≤ α.

Since the number of experiment days is not known in advance, this approach typically
leads to conservative error control.

Note that the total number of days in the experiment is not known in advance,
so this method typically provides a conservative control of the overall Type I error.
Alternatively, a more powerful method can be implemented based on the limit theorem
proved in [4]. Let n be the total number of observations. As n → ∞, the sequence
of stochastic processes X(bntc) converges in finite-dimensional distributions to the
process Bes2

d−1(t)/t, where Besd−1(t) is the (d − 1)-dimensional Bessel process. Each
day, the finite-dimensional distribution of the Bessel process is used to estimate the
distribution of X(nk) under condition that the Pearson statistic assumes specific values
on preceding days.

The second approach follows the framework introduced in [3], where the hypothesis
testing problem is formulated as

H0 : θ = θ0, H1 : θ ∼ Dirichlet(β),

where β ∈ Rd
+. This formulation is called a Bayesian alternative. The method proposed

in [3] is an iterative algorithm that updates the posterior odds O(n) of H1 over H0 as
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observations accumulate, where n is the number of observations. Then the value ofO(n)
is compared to a given threshold. A key result enabling the theoretical justification of
the method is that, under H0, O(n) is a nonnegative supermartingale. This property
enables one to prove the following inequality under H0

P(∃n∗ ∈ N : O(n∗) ≥ 1/α) ≤ α

where α is a Type I error rate. While the method is straightforward to implement, it
is easy to see that it overestimates the Type I error rate by design.

3 Conclusion

In this study, we provide a theoretical comparison of the two approaches described
above and evaluate their empirical performance on both real-world and synthetic
datasets under various target allocation ratios and alternatives. We further discuss
the advantages and limitations of each method and draw conclusions regarding their
applicability in the context of online controlled experiments.
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In the context of digitalization of agriculture, new approaches to scientific
research are needed in constructing analytical expressions as the most conducive
to computerization of a wide range of specific applied problems. Significant
uncertainty of agricultural information forces decisions to be made mainly by
humans. This situation leads to the use of expert knowledge as a material
for constructing mathematical models. For this purpose, the most convenient
is the fuzzy-possibility approach, which is capable of formalizing verbal expert
information with an analytical expression. In this paper, it is used to construct
a fuzzy-possibility model of the state of environmental safety of a cattle farm.
At each stage of model construction, the concepts of “fuzzy estimates”, “fuzzy
measurements” and NON-factors were identified and interpreted as inevitable
attributes of the study. The resulting adequate model allowed us to conclude
that the degree of nitrogen preservation during disposal and use is a universal
quantitative indicator of the farm’s environmental sustainability. The study was
funded by a grant from the Russian Science Foundation No. 24-19-00823.

Keywords: Expert knowledge; Fuzzy-possibility approach; Environmental
safety of cattle farm; Fuzzy measurements and fuzzy evaluation; Non-factors.

1 Introduction

An analysis of domestic and foreign scientific and technical literature on agricultural
topics [1–13] showed that recently, methods of mathematical modeling of both
individual local phenomena (for example, increasing milk yields) and entire technologies
(FPM technologies for the production of feed from grasses) have been increasingly used.
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This is due to the requirements of digitalization as one of the concepts of Industry
4.0, which involves the transition to automated agricultural production controlled by
intelligent systems in real time.

Each time, when approaching a new specific task, the manager (researcher, decision
maker, expert) is always in a situation of uncertainty: what method to use to solve
it, whether there are measuring instruments, whether the team has enough experience
to solve it on time and with a certain accuracy, and a host of other management
difficulties. An important feature here is the talent for identifying and overcoming many
other uncertainties: unknown, incomplete, unreliable, imprecise, underdetermination,
incorrectness, consistency, etc. Thanks to the brilliant research of our compatriot
A.S. Narinyani [14; 15], such nouns with the prefix “non” are united under the common
name of NON-factors, which are fundamental components of informatics and play a
decisive role in increasing the efficiency of modeling processes.

In agriculture, all technological processes and even their individual stages should
be considered from a mathematical point of view as complex objects (CO) [16].
This approach allows the use of a powerful developed and tested apparatus of the
model-algorithmic approach to solving practical problems of agricultural production
[17].

Figure 1 schematically shows the main fuzzy linguistic variables of the multifactor
space, systematically characterizing the ecological state of the cattle farm (CF),
allowing the synthesis of multifactor mathematical models on their basis [18].
When analyzing Figure 1, uncertainty is manifested by several NON-factors:
underdetermination of the factor space (many different factor spaces can be
constructed), the presence of NON-quantitative (qualitative, verbal) fuzzy linguistic
variables and their incompleteness, and possible inaccuracy in determining the
boundaries of change of variables.

Fig. 1. Factor space characterizing the environmental sustainability of a cattle farm

NON-factors are one of the features of “fuzzy computing” introduced by the
creator of fuzzy mathematics Lotfi Zadeh when studying and predicting the state
of the CL of any subject area [19]. The NON-factor of data inaccuracy manifests
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itself not only in the measurement of physical quantities, but also in errors in their
recording. It should be taken into account that any measured value of any physical
quantity is indistinguishable in a certain range of inaccuracy. The widespread use of
implicit NON-factors in everyday and practical activities is manifested regardless of the
subject area [14; 15]. Thus, despite the declarative nature (in other words, vagueness,
imprecision) of the work statement by the manager, employees refract it to their front
of responsibilities due to professional experience and the innate ability of a person to
recognize the vagueness of an image, verbal or real. This, in fact, is what the manager’s
confidence in the team’s overcoming of the vagueness and ambiguity of the essence of
the upcoming (declared) work is based on. This study provides an opportunity to
get acquainted with some important features of the use of “fuzzy measurements” and
“fuzzy assessments” based on expert knowledge in the context of NON-factors.

2 Materials and methods

Currently, the principles of digitalization give rise to very special requirements for
materials and methods in scientific publications on modeling, which differ significantly
from those accepted in journals on agricultural topics. In this study, one of the main
features is that the expert knowledge (EK) serve as the materials, and the ones used
methods use specific methodological model-algorithmic approaches that contribute to
representation and formalization of EK by analytical expressions. Methods
for assessing the state of the CO in agriculture have the peculiarity that in practice
most decisions are made by a person. This situation is also typical in other subject
areas (CO), for example, even in astronautics from 50 to 70 per of decisions are made
collegially. In such conditions, it is quite natural to use the fuzzy-possibility approach
(FPA), based on the use of explicit and implicit EP [16]. At the same time, costruction
fuzzy-possibility models (FPM) quantitative assessment of the state of the CO occurs
under conditions of uncertainty, which includes imprecision, fuzzyness and other nouns
with the prefix “non” with the general name of NON-factors [14; 15], Method of
constructing FPM includes the use of the ideology of three fundamental theories: the
theory of fuzzy sets, the theory of experimental design and the theory of NON-factors.
Below we consider the specific features of the application of each of the listed theories
in relation to the modeling of technical and technological processes and technologies of
agricultural production.

Features of “fuzzy measurements” and “fuzzy assessments” based on
expert knowledge Using the example of mathematical assessment of the state of
environmental sustainability of cattle farms, the main elements of the selection and
theoretical justification of the methodology for constructing the FPM are shown, taking
into account the ecological rehabilitation and features of the application of “fuzzy
measurements” and “fuzzy assessments”. The scientific and methodological apparatus
of the formal description of the state of the CO based on explicit and implicit EK
includes, as shown in Figure 2, three main stages: extraction (operator g1), presentation
(operator g2) and formalization (operator g3). General mapping of EK the operator µ
in set-theoretical form can be represented as:

249



µ = g3
◦g2
◦g1 : T× U× X→ Y/Ξ, (1)

where T is the set of moments of time t at which the object is observed; U,Y are the
sets of input U and output Y effects, respectively; X is the set of states of the object,
characterized at each moment of time t∈T is a set of fuzzy linguistic variables of the
factor space; Y/Ξ, is a factor set of states of the SO, to one of which the calculated
value of Y according to the constructed model must be assigned.

Fig. 2. Commutative diagram of the processes of extraction, representation and formalization
of explicit and implicit expert metaknowledge

Feature extraction of the EK (g1, Figure 2) at the first stages of working with
an expert is the need to include in the study as many variables as possible that are
inherent in the functioning of the studied CO. Usually, the variables are depicted
in fuzzy linguistic form (Figure 3) to enable the reflection of “fuzzy measurements”,
on the basis of which the expert makes a “fuzzy assessment”. The abscissa axis of
Figure 3 actually contains three transition scales: at the top is a verbal scale for ease
of use by the expert (the expert thinks in words, not numbers); at the bottom are the
quantitative values of the variable (0.3, ..., 0.7) and the third is a standardized scale
for applying the methods of the theory of experimental design (“-1”, ..., “+1”). The
membership function is located along the ordinate axis, in which only the modes of
verbal assessments correspond to the value “+1”. It should be especially noted that the
view shown in Figure 3 fuzzy linguistic variable is fuzzy model of the element of the EK
[16–18], which translates the expert’s verbal “fuzzy assessments” into numerical values
as “fuzzy measurements”. In this case, each mode on the verbal abscissa axis (Low, ...,
Average, ..., High) represents fuzzy number, for example, the “Above Average” mode
is based on the interval of the set of numbers [0.5–0.7] and makes it possible to express
the measure fuzzy expert “fuzzy assessment” in the vicinity of a given mode. The same
technique is especially important at the stage of determining the degree of adequacy of
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the constructed FPM based on statistical data, but already as a “fuzzy measurement”
for each fuzzy linguistic variable.

Fig. 3. General view of a linguistic variable

Knowledge representation expert (g2, Figure 2), in contrast to the representation
of a knowledge element (Figure 3), consists of selecting from the entire preliminary
set of such variables that, in the expert’s opinion, will be included in the factor space
for solving a specific problem. By choosing the correct factor space, the expert tries
to ensure the systematicity fuzzy linguistic variables in the description of various
aspects of the functioning of the CO. The selected factor space fully reflects the
knowledge and experience of the expert in solving the assigned task. The expert
pays special attention to the selection and justification of the dependent variable Y,
which should reflect in a generalized form the changes in the state of the CO in various
situations. Thus, when studying the problem of processing and using manure, the
expert chose the environmental sustainability of the cattle farm as Y. Since such an
indicator does not exist in quantitative form in agricultural practice, it was decided to
choose a dimensionless fuzzy oppositional scale in the interval [0.3, ..., 0.7], as shown
in Figure 3. In this case, a verbal-numerical table must be developed, where the verbal
characteristics for the transition to the corresponding numerical intervals are indicated,
as shown in Table 1.

Even white analysis of table 1 reveals uncertainty verbal information. fuzziness
descriptive characteristics for “fuzzy measurements” and numerical interval values for
“fuzzy estimates”. However, even in conditions of such a significant uncertainties. The
constructed FPM quite effectively represents the experience and knowledge of an expert
on a given specific issue. In the present study, the factor space on which the FPM is
constructed includes seven (NON-factor incompleteness) fuzzy linguistic variables [18]:
X1 is number of animals on the farm, 400-2500 heads; X2 is degree of efficiency of
manure processing technology; X3 is degree of efficiency of storage technology; X4 is
degree of efficiency of fertilizer application technology; X5 is availability of fields for
the farm; X6 is level of technical equipment; X7 is level of organization and control
of technological processes. The linguistic form of the variable Y on the abscissa
axis contains only two scales (Figure 3), since there is no need to translate it into
a standardized scale. Here it is necessary to clarify the difference in the nature of the
manifestation of “fuzzy assessments” and “fuzzy measurements”. As follows from the
analysis of the factor space, all fuzzy linguistic variables. When constructing NVMs,
they are used to determine the “fuzzy assessments” of the corresponding factors by the
expert when filling out the survey matrix, and in the process of assessing the degree
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Table 1
Translation of verbal characteristics into numerical intervals

Intervals
Modes of
intervals and
their meanings

Descriptive characteristics

0.4 and below Low (L) 0.3
An environmentally unsustainable cattle
farm with a risk of causing environmental
damage of more than 70%

Below average
(BA) 0.4

An environmentally unsustainable cattle
farm with a risk of causing environmental
damage greater than 50%

0.4 – 0.6 Average (A) 0.5

A cattle farm of medium ecological
sustainability with a risk of occurrence of
localized cases of damage to the
environment of less than 50%

Above average
(AA) 0.6

Sustainable farm with minimal risk of local
environmental damage

0.6 and above High (H) 0.7
An environmentally sustainable farm with
no significant risks of harming the
environment

of adequacy of the model, the same linguistic form of their presentation is used for
“fuzzy measurements”. Further, according to the methodology based on the methods
of the theory of experimental design, an expert survey matrix is constructed (Table 2)
as a semi-replica of the full factorial experiment 27-1, where each row of the matrix
represents fuzz zy production rule of the implicative type “if, ..., then”. The expert
fills in each line (situation) with a verbal assessment of YEV taking into account the
verbal-numerical table 1 and after translating his assessments into quantitative values
YEN a polynomial model Y is constructed using a special software product [20].

Processing of expert information according to Table 2 in quantitative terms led to
the model [18]:

Y = 0.52734 + 0.02891x1 + 0.05078x2 + 0.05391x3 + 0.03047x4 + 0.02422x5

+ 0.02891x6 + 0.01172x7 − 0.02578x2x3 − 0.01172x5x6 + 0.00859x5x7

+ 0.00703x1x4x7 − 0.00859x1x5x7 − 0.01328x2x3x5 − 0.01016x3x4x6,

where only terms with significant coefficients are presented, and variables are in a
standardized scale according to the formulas:

xi =
Xi −Xl

∆Xi

, X̄i =
Xmax +Xmin

2
, ∆Xi =

Xmax −Xmin

2
, (2)

i = 7 is number of variables.
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Table 2
Expert survey matrix

x1 x2 x3 x4 x5 x6 x7 YEV YEN YM
1 −1 −1 −1 −1 −1 −1 1 L 0.30 0.30
2 1 −1 −1 −1 −1 −1 −1 L-BA 0.35 0.35
3 −1 1 −1 −1 −1 −1 −1 BA 0.40 0.42
4 1 1 −1 −1 −1 −1 1 BA-A 0.45 0.49

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61 −1 −1 1 1 1 1 1 AA 0.60 0.62
62 1 −1 1 1 1 1 −1 AA-H 0.65 0.64
63 −1 1 1 1 1 1 −1 AA 0.60 0.61
64 1 1 1 1 1 1 1 H 0.70 0.70

3 Results and discussion

The very first feature of this study is the understanding that NON-factors have been
used, are used and will be used by almost all managers, decision makers, researchers,
but only implicitly. This study provides an opportunity to “feel” (reveal) the effect
of as many NON-factors as possible and be able to overcome them. As follows from
the above, the choice of factor space is fully manifested by the NON-factor under
determination, because another the expert can choose another factor space from a
set of potentially possible ones fuzzy linguistic variables. And the linguistic variables
themselves, by definition and by properties, are unclear. Fuzzy is also manifested in
the choice of variable names, as in our example: Y is a generalized indicator of the
ecological state of a cattle farm. Officially, such an indicator does not exist, and we
introduced it as a characteristic reflecting the degree of multifactorial ecological impact
of a specific farm on the environment. If we talk about fuzzy information used, the
main role in it is played by inaccuracy. Here the issue is in the culture of handling
quantitative information. For example, fresh cattle bedding manure contains 0.40
percent total nitrogen with a 5 percent analysis error, the zone of indistinguishability
is 0.38 – 0.42 percent. Then, in economic or production calculations in this zone
of nitrogen values, the difference in results is statistically unprovable, it can only be
assessed in fact at the end of the production cycle, for example, by crop yield or income
received in rubles. The specifics of the expert’s professionalism in choosing the factor
space, its “fuzzy measurements” and “fuzzy assessments” are revealed only at the final
stages of constructing the FPM when checking the degree of adequacy of the model
calculations to the actual data, as shown in Table 3 for three farms in the Leningrad
Region [18]. In the absence of statistics on such specific data, a study was conducted
using the developed methodology situationally in three farms in the Leningrad Region.
Analysis of the results in Table 3 allows us to conclude that the calculations are highly
similar YM according to the model (1) actual state environmental sustainability of
cattle farms, conducted by independent experts YF, YMV - YM assessment in verbal
form according to Table 1. The mathematical model (1), as the analysis shows, can
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Table 3
Results of assessing the degree of adequacy of calculations according to

the model to the actual values of the state of environmental sustainability
of cattle farms on three farms

Farms x1 x2 x3 x4 x5 x6 x7 YF YM YMV

1 -1 -0.5 -0.25 -0.75 -0.5 1 1 BA 0.463 L-BA
2 1 0.5 0.5 0 0.5 1 1 AA 0.647 A-AA
3 0 1 1 1 -0.5 1 1 AA-H 0.663 AA-H

Fig. 4. The relationship between nitrogen conservation and the environmental sustainability
index of a cattle farm, correlation coefficient R= 0.864

be used to assess the condition of farms by this indicator and conduct more in-depth
studies. Thus, Figure 4 shows the correlation between the nitrogen content after the
introduction of organic fertilizers into the soil with incorporation and the environmental
sustainability of a cattle farm.

As a result of the demonstrated dependence, an important conclusion can be made:
the content of retained nitrogen introduced into the farm’s land can serve as a universal
quantitative indicator of its environmental sustainability.

4 Conclusion

The importance and peculiarity of “fuzzy assessments” and “fuzzy measurements”
are demonstrated in detail using a specific example of constructing a fuzzy-possibility
model for assessing the state of environmental safety of a cattle farm. Their significance
lies in the fact that only such an approach to using the knowledge and experience of
an expert provides the opportunity to construct analytical fuzzy-possibility models of
the state of complex objects and technologies of agricultural production. At the same
time, the awareness of the uncertainties of any information as an inevitable feature of
scientific research in any subject area leads to the need to identify and overcome the
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effect of many NON-factors. In such a situation, the peculiarity of publications on
agricultural topics in the “Materials and Methods” section should take into account
that the material is expert knowledge with the involvement of methods for formalizing
it in an analytical form. This approach, using the example of constructing a FPM
for environmental safety of a cattle farm, made it possible to explain not only the use
of “fuzzy assessments” and “fuzzy measurements”, but also to identify the effect of
specific uncertainties at various stages of the study. Thus, the conducted study showed
that on the basis of fuzzy mathematics in conditions of fuzzy initial information in
a fuzzy space of fuzzy linguistic variables, it is possible to obtain clear results in the
management of agricultural production.
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We propose a sequential test for detecting inhomogeneities among problem
versions in timed competitions. Modeling participant arrivals and solve times
as stochastic processes, we show that under the homogeneity null hypothesis the
sequential divergence statistic converges weakly to a chi-square stochastic process.
This enables real-time fairness monitoring. The method provides a criterion for
withdrawing problematic versions during ongoing contests.

Keywords: online contest; empirical process; Gaussian process; chi-square
process; weak convergence.

1 Introduction

Imagine a competition with several versions for problem lists (presumably equally
complex), where users join the contest at random moments of a certain interval, receive
problems, and solve a problem for some time.

The main task is to check the homogeneity of different versions during the contest.
We want to remove inhomogeneous version as soon as possible. Thus, we construct
a sequential test to control the homogeneity of problem list versions directly during
the contest. To construct a sequential test it is necessary to study the behavior of the
stochastic process corresponding to the incoming data. In this article we consider a
limit theorem for such process.

2 Model

Suppose we want to check the fairness of one particular problem, this problem has m
versions. We assume that the versions are distributed independently and equiprobably
for each participant, each participant solves only one version, so we assume that the
total number of people solving each possible version does not depend on the version
and is equal to N .

Let Sji be the time when the i-th person from the j-th version started solving his
problem, T ji be the total time this person spent solving the problem. We assume
that for all i, j that Sji are independent identically distributed random variables, T ji
are independent and, for fixed j, identically distributed random variables. Then it is
natural to assume that the complexity of version is strongly correlated with the solution
time. Therefore, all versions are equally complex if the solution time for all versions
has the same distribution.
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Let us introduce the processes that are studied in this article. Let

ξji (t) = I{Sji + T ji ≤ t}
be the indicator that the participant has solved the problem at time t,

ηji (t) = (T ji + Sji ) · I{S
j
i + T ji ≤ t}+ t · I{Sji + T ji > t}

– the time that this participant spent on the solution till time t. Then the number of
participants who have solved the j-th version of the problem at time t is equal to

Kj(t) =
N∑
i=1

ξji (t),

and the total time spent by participants on solving the j-th version of the problem at
time t is

Aj(t) =
N∑
i=1

ηji (t).

Consider the random fields

γi(t) = (ξ1
i (t), η

1
i (t), . . . , ξ

m
i (t), ηmi (t))T ,

X̂N(t) = (K1(t), A1(t), . . . , Km(t), Am(t))T =
N∑
i=1

γi(t),

X(t) = (Eξ1
i (t),Eη

1
i (t), . . . ,Eξ

m
i (t),Eηmi (t))T .

We consider h(X̂N(t)), where

h(x1
1, x

1
2, . . . , x

m
1 , x

m
2 ) =

m∑
j=1

xj1 ln

(
xj1

x1
1 + · · ·+ xm1

· x
1
2 + · · ·+ xm2

xj2

)
.

We prove that under the null hypothesis the random process h(X̂N(t)) converges in
distribution to a quadratic form of a Gaussian random field in the Skorokhod space
D[0,∞) as N −→∞:

h(X̂N(t))
D−→ 1

2
Z(t)T Hess(h)(X(t))Z(t),

where Z(t) is some Gaussian random field, Hess(h) is the matrix of second derivatives
of the function h at the point X(t).

This theorem allows us to construct sequential tests for the process h(X̂N(t)), using
the distribution of the limit process.
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In this paper, the focus is on analyzing the returns of financial assets using the
GARCH(1,1) model and various distributions: stable, Student’s t-distribution,
and skewed Student’s t-distribution. The work includes a theoretical analysis
of the model, as well as practical application to the return data of Apple Inc,
Gazprom PJSC, Severstal PJSC, Microsoft, and Nike. The results show that
stable distribution models provide more accurate volatility forecasts in conditions
of high uncertainty. The choice of model and distribution proves to be critical
for the precision of financial analysis, emphasizing the need to use more complex
distributions to forecast volatility in financial markets.
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1 Introduction

Models of autoregressive conditional heteroskedasticity (ARCH) were introduced by
Engle (1982), and their extension, GARCH (Generalized ARCH), belongs to Bollerslev
(1986). In these models, the key concept is conditional variance, which means that
the variance depends on past values. In classic GARCH models, the conditional
variance is expressed as a linear function of the squares of previous values in the series.
This specification allows capturing the main stylized facts characterizing financial time
series. At the same time, it is simple enough to ensure a complete study of the solutions.

2 Model

Definition 1. (GARCH(p,q) Process) The process εt is called a GARCH(p,q) process
if its first two conditional moments exist and satisfy:

1. E(εt | εu, u < t) = 0, t ∈ Z.

2. There exist constants ω, αi for i = 1, . . . , q and βj for j = 1, . . . , p, such that

σ2
t = Var(εt | u, u < t) = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j, t ∈ Z. (1)

The last equation can be written more compactly as:

σ2
t = ω + α(B)t2 + β(B)σ2

t , t ∈ Z, (2)
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where B is standard backshift operator (Biε2t = ε2t−i and Biσ2
t = σ2

t−i for any integer
i), and α and β are polynomials of degrees q and p, respectively:

α(B) =

q∑
i=1

αiB
i, β(B) =

p∑
j=1

βjB
j.

Definition 2. (Strong GARCH(p,q) process) Let (ηt) be a sequence of independent
and identically distributed random variables with distribution η. The process (εt) is
called a strong GARCH(p,q) process (with respect to the sequence (ηt)) if{

εt = σtηt,

σ2
t = ω +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjσ

2
t−j,

(3)

where αi and βj are nonnegative constants, and ω is a (strictly) positive constant.

When p = q = 1, the model (3) takes the form:{
εt = σtηt,

σ2
t = ω + αε2t−1 + βσ2

t−1,
(4)

with ω ≥ 0, α ≥ 0, β ≥ 0.

3 Preliminary analysis

To construct descriptive statistics of the company returns, I selected the following
companies: Apple Inc (AAPL), Gazprom PJSC (GAZP), Severstal PJSC (CHMF),
Microsoft (MSFT) and Nike (NKE). Data were obtained from the website
ru.investing.com for the period from January 2015 to May 2025 (daily). The following
descriptive statistics were chosen for the table: minimum, maximum, median, first
quartile, third quartile, mean, and variance. In R, these can be calculated using
the functions max(), min(), median(), quantile(...,0.25), quantile(...,0.75),
mean() and var(). I used the “knitr” and “kableExtra” libraries to construct the
table. The following results were obtained:

Table 1
Descriptive statistics

Company Min Max Median Q1 Q3 Mean Variance
AAPL -75.07 300.12 0.090 -0.750 1.0175 0.1820208 40.224610
GAZP -30.46 24.95 -0.035 -0.880 0.8925 0.0240686 4.530015
CHMF -22.11 11.44 0.050 -0.960 1.0800 0.4246404 3.912391
MSFT -14.74 12.42 0.085 -0.6875 0.9700 0.1009575 2.984786
NKE -19.99 15.53 0.030 -0.620 0.8000 0.0630000 3.699889

Based on the descriptive statistics obtained, the following conclusions can be made:
AAPL: Positive returns, high stability, and predictability make it attractive for
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investors. GAZP: High volatility and risk, along with a near-zero average change,
make it less appealing to conservative investors. CHMF: Moderate returns and
volatility place this company between AAPL and GAZP. MSFT: Balanced returns
and moderate volatility make it suitable for investors seeking stable assets. NKE:
Moderate returns with an acceptable level of risk make it interesting for those who
prefer assets with growth potential.

4 Modeling GARCH(1,1) Processes. Estimation of

the Parameter Vector

We will use the “rugarch” library for modeling. To check the accuracy of the modeling,
we will use the Lewis-Lee test to check for autocorrelation in the residuals. Additionally,
we will estimate the parameter vector of the constructed GARCH(1,1) model with the
considered distributions.

Table 2
GARCH(1,1) model parameters and Lewis-Lee test results

Parameter Stable Student’s t Skewed Student’s t
mu 1.661366e-02 -6.540943e-02 -6.406370e-02

omega 1.055867e-03 1.032074e-03 1.037009e-03
alpha1 1.345808e-09 1.168474e-09 3.746238e-10
beta1 9.98999e-01 9.989999e-01 9.990000e-01
skew 1.029812e+00 - 1.03287e+00
shape 5.999953e+01 9.983776e+01 5.999935e+01

p-value 0.153 0.07808 0.1527

5 Volatility forecast

We will build GARCH(1,1) models based on known returns (daily from January 2015
to May 2025) for the companies Apple Inc (AAPL), Gazprom PJSC (GAZP), Severstal
PJSC (CHMF), Microsoft (MSFT), and Nike (NKE) with the following distributions:
stable, Student’s t-distribution, and skewed Student’s t-distribution. We will also
estimate volatility and forecast it for 6 months ahead. To do this, we will use the
following algorithm:

1. Define the specification of the GARCH(1,1) model depending on the distribution
considered: ugarchspec().

2. Fit the model to the data using the function ugarchfit().

3. Estimate volatility using the function sigma(). Plot the volatility.
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4. Evaluate residuals using the function residuals(), then plot them to analyze their
behavior and visually assess the estimated volatility.

5. Forecast volatility for the specified horizon of 6 months using the function
ugarchforecast(). Plot the forecasted volatility for future periods.

6 Conclusion

The model with the Student’s t-distribution demonstrated higher robustness to outliers,
making it preferable for analyzing financial time series where such outliers frequently
occur.

The skewed Student’s t-distribution, in turn, provides additional flexibility by
allowing for the modeling of asymmetry in the data. This is particularly important for
financial time series, where both positive and negative outliers can significantly impact
volatility. Models with skewed distributions show more accurate results in conditions
where the data exhibit pronounced asymmetry.

The stable distribution, unlike the others, possesses greater flexibility due to its
parameters. This model can adapt to various conditions and can be used to describe a
wide range of data, including those with asymmetric distributions and infinite moments.

The comparison of models showed that the choice of distribution significantly
impacts the estimation of volatility. Based on the conducted analysis, it is
recommended to use GARCH(1,1) models with Student’s t and its skewed variants
or stable distributions for forecasting volatility in financial markets, especially under
conditions of high uncertainty. These models allow for a more accurate consideration
of data characteristics and provide better quality forecasts.

Thus, the analysis indicated that the choice of model and distribution is critical
for the accuracy of volatility forecasting. Given the dynamics of financial markets and
the presence of outliers, models with more complex distributions generally yield more
reliable and informative results for analysis and decision-making.
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Let {Zn, n = 0, 1, . . . } be a critical branching process in i.i.d. random
environment, Zr,n be the number of particles in the process at moment 0 ≤
r ≤ n − 1 that have a positive number of descendants in generation n, and
{Sn, n = 0, 1, . . . } be the associated random walk of {Zn, n = 0, 1, . . . }. It is
known that if ES1 = 0 and σ2 = ES2

1 ∈ (0,∞) , then, for any t ∈ [0, 1]

lim
n→∞

P

(
logZ[nt],n

σ
√
n
≤ x

∣∣∣Zn > 0

)
= P

(
min
t≤s≤1

B+
s ≤ x

)
, x ∈ [0,∞),

where
{
B+
t , 0 ≤ t ≤ 1

}
is the Brownian meander.

We supplement this result by description of the distribution of the properly scaled

random variable logZr,n under the condition
{
Sn ≤ t

√
k, Zn > 0

}
, where t > 0

and r, k →∞ in such a way that k = o(n) as n→∞.

Keywords: reduced branching process; random environment; limit theorem.

1 Introduction

We consider critical branching processes evolving in an non-favorable random
environment. Let F = {f} be the space of all probabilistic generating functions on
the set {0, 1, . . . }. Let

F (s) :=
∞∑
k=0

F ({k})sk, s ∈ [0, 1],

be a random variable taking values in F, and

Fn(s) :=
∞∑
k=0

Fn({k})sk, s ∈ [0, 1], n ≥ 0,

be a sequence of independent probabilistic copies of F . The infinite sequence E =
{Fn, n ≥ 0} is called a random environment.

A sequence of non-negative integer-valued random variables Z = {Zn, n ≥ 0} ,
given on a probability space (Ω,F ,P), is called a branching process in a random
environment (BPRE), if Z0 is independent of E and, given E the process Z is a Markov
chain in which

L (Zn|Zn−1 = zn−1, E = (f1, f2, . . . )) = L(ξn1 + . . .+ ξnzn−1)
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for all n ≥ 1, zn−1 ≥ 0 and f1, f2, · · · ∈ F, where ξn1, ξn2, . . . is a sequence of independent
identically distributed random variables with a distribution given by the generating
function fn.

A sequence
S0 = 0, Sn = X1 + · · ·+Xn, n ≥ 1,

where Xi = logF ′i (1), i = 1, 2, . . . , is called the associated random walk for the
process Z.

The growth rate of the population size of the BPRE significantly depends on the
properties of the associated random walk S = {Sn, n ≥ 0}. It is this phenomenon we
investigate in the present paper.

2 Main results

We assume that
EX1 = 0, σ2 = EX2

1 ∈ (0,∞). (1)

Hence it follows that, as n→∞{
S[nt]

σ
√
n
, t ≥ 0

}
=⇒ B = {Bt, t ≥ 0} ,

where B is the standard Brownian motion and the symbol =⇒ denotes convergence in
distribution in the space of functions that are continuous on the right and have limits
on the left, equipped with a Skorokhod topology.

We now formulate the first condition that we impose on the analyzed BPRE.
Condition B1. Random variables Xn, n ≥ 1, are independent copies of a random

variable X satisfying condition (1) and having absolutely continuous distribution.
Besides, there is an n ≥ 1 such that the density P(Sn ∈ dx)/dx of the random variable
Sn is bounded.

Since the associated random walk oscillate, it follows that we consider a critical
BPRE (see [1] and [2]).

Our next condition on the properties of the random environment concerns the
reproduction law of particles. Set

η :=

∑∞
i=1 i

2F ({i})
(
∑∞

i=0 iF ({i}))2 .

Condition B2. There is a number κ > 0 such that

E[log2+κ max(η, 1)] < ∞.

This condition excludes from consideration BPRE’s with extremely productive
particles.

Let Zr,n be the number of particles at moment r ∈ [0, n−1], having positive number
of descendants at time n, and let Zn,n = Zn. Given n the process

Zred := {Zr,n, r = 0, 1, . . . , n}
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is called a reduced process on the interval [0, n] or simply a reduced process.
It is known [3] that if condition (1) is valid and some additional technical conditions

fulfilled then for any t > 0 and s ∈ [0, 1]

P

(
1

σ
√
n

logZ[sn],n ≤ t
∣∣∣Zn > 0

)
∼ P

(
1

σ
√
n

min
[sn]≤m≤n

Sm ≤ t
∣∣∣Zn > 0

)
∼ P

(
inf

s≤q≤1
B+
q ≤ t

)
as n → ∞, where

{
B+
q , 0 ≤ q ≤ 1

}
is a Brownian meander, i.e. a Brownian motion,

considered to be nonnegative on the interval [0, 1].
We study the distribution of the random variable Zr,n in cases when min(r, n−r)→

∞ as n → ∞, and the random variable Sn is bounded from above by some function
depending on n, the growth order of which is smaller than

√
n .

Theorem 1. Let conditions B1 and B2 be valid. If n� k � m = n− r →∞, then,
for any z ∈ (−∞,+∞) and t > 0

lim
n→∞

P
(

logZr,n − Sr ≤ σz
√
m|Sn ≤ σt

√
k, Zn > 0

)
= P

(
min

0≤s≤1
Bs ≤ z

)
.

Theorem 2. Let conditions B1 and B2 be valid. If there is θ > 0 such that k ∼ θm =
θ(n− r)→∞ as n→∞ and m = o(n), then, for all y ≥ 0 and t > 0

lim
n�k→∞

P
(

logZr,n ≤ σy
√
m|Sn ≤ σt

√
k, Zn > 0

)
= A(

√
θt,
√
θ (y ∧ t)),

where

A(T, y) =
2

T 2

∫ ∞
0

wP

(
−w ≤ min

0≤s≤1
Bs ≤ y − w;B1 ≤ T − w

)
dw.
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We present some new results on asymptotic properties of statistics derived
from purely random (uniformly distributed) binary sequence of length n →
+∞. These results are obtained by methods of information geometry applied
to manifolds of Markov probability distributions on the set of infinite binary
sequences. In the talk we briefly describe underlying information-geometric
theory and technics of proofs and show how finding probabilistic and statistical
properties comes down to geometric and combinatorial computations.
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1 Notations

Let x1, . . . ,xn ∈ V ::= {0, 1} be “purely random” (uniformly distributed) binary
sequence of length n ∈ N: P {xn1 = q} ≡ 2−n, q ∈ Vn, xn1 ::= (xi)

n
i=1. For

convenience, we consider index i of xi as discrete time and use corresponding
“temporal” terminology. Below we give some examples of our new results on asymptotic
properties of statistics derived from xn1 as n→ +∞. These results develop the earlier
obtained ones [1; 2]. By cov {·, ·}, cor {·, ·} we denote respectively the covariance and
the correlation coefficient for a pair of random variables.

2 Asymptotic covariances of L-grams frequencies

Let us fix some finite pattern of indices J = {j1, . . . , jL} ⊂ N, 1 = j1 < j2 < · · · <
jL, 1 ≤ L = |J | < +∞, and denote by xJ ::= (xj)j∈J ∈ VL the binary L-gram
corresponding to the indices from J . Also let us call moving J-window any shifted
pattern i + J = {i + j1, . . . , i + jL} ⊂ Z, i ∈ Z. Consider the following frequencies of
L-grams within moving J-windows:

f {J} ::= (f {J}(q))q∈VL ∈ R2L , f {J}(q) ::=

n−jL∑
i=0

1 {xi+J = q} , q ∈ VL. (1)
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Here and in further notations we omit sequence length n for brevity. Covariance matrix
of the frequencies vector (1) has the following asymptotics:

cov
{
f {J}, f {J}

}
=

n→+∞
n · C{J} +O (1) ∈ R2L×2L . (2)

This covariance matrix appears in many applications, mainly for standard “solid”
patterns J = {1, . . . , L} without “holes”. The case of arbitrary “sparse” patterns
J concerns binary parsimonious high-order Markov chains with partial connections [3],
whose sufficient statistics have the form (1). The main term C{J} ∈ R2L×2L of (2) has
highly complicated irregular structure of entries (pairwise asymptotic covariances of
frequencies (1), see [4] for instance), which makes its analysis quite a hard problem.
However, the spectrum of eigenvalues of C{J} can be completely obtained.

Let us call two nonempty finite subsets J ′, J ′′ ⊂ N shift equivalent (J ′ ∼ J ′′), if
J ′′ = i+J ′ for some i ∈ Z. Denote by 2J+ ::= {J ′ ⊂ J : J ′ 6= ∅} the set of all nonempty
subsets of pattern J .

Theorem 1. Let J1, . . . , JK ⊂ 2J+, tKk=1Jk = 2J+, be classes of shift equivalence of
nonempty subsets of pattern J . Matrix C{J} has exactly K positive eigenvalues (taking
into account multiplicity):

λk(C
{J}) = 2−L|Jk|, k = 1, . . . , K. (3)

The corresponding eigenvectors for eigenvalues (3) can also be obtained in explicit
form. Let us illustrate Theorem 1 by a brief example. Take J = {1, 2, 3, 5}, L = |J | = 4.
The set 2J+ of 15 nonempty subsets J ′ ⊂ J breaks into the following K = 10 classes of
shift equivalence (in nondecreasing order of classes powers):

J1 : {1}, {2}, {3}, {5}; λ1 = 4
16

;

J2 : {1, 2}, {2, 3}; λ2 = 2
16

; J3 : {1, 3}, {3, 5}; λ3 = 2
16

;

J4 : {2, 5}; λ4 = 1
16

; J5 : {1, 5}; λ5 = 1
16

; J6 : {1, 2, 3}; λ6 = 1
16

;

J7 : {1, 2, 5}; λ7 = 1
16

; J8 : {1, 3, 5}; λ8 = 1
16

; J9 : {2, 3, 5}; λ9 = 1
16

;

J10 : {1, 2, 3, 5}; λ10 = 1
16
.

The eigenvalues 1/16, 2/16 and 4/16 have multiplicities 7, 2 and 1 respectively (the
remaining 6 eigenvalues of C{J} ∈ R16×16 are zeroes).

For L = 1 it is always K = 1, λ1 = 1/2. For L = 2: K = 2, λ1 = 2/4, λ2 = 1/4.
For L = 3 there are two cases. The first case: j2 − j1 = j3 − j2 (scaled solid pattern),
K = 4, λ1 = 3/8, λ2 = 2/8, λ3 = λ4 = 1/8. The second case: j2 − j1 6= j3 − j2, K = 5,
λ1 = 3/8, λ1 = · · · = λ5 = 1/8.

It follows from Theorem 1 that the trace

tr(C{J}) =
K∑
k=1

λk = 2−L|2J+| = 1− 2−L (4)

does not depend on the shape of pattern J , but only on its size L = |J |. In [4]
the expression (4) was obtained for the solid pattern J = {1, . . . , L}. The extremal
eigenvalues (among the positive ones) also do not depend on the shape of pattern J :

λmax(C{J}) = 2−L|J1| = L · 2−L, λ+
min(C{J}) = 2−L|JK | = 2−L.
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Except J1 consisting of L one-element subsets {ji}, for other classes obviously |Jk| < L,
whence λmax(C{J}) is always a simple eigenvalue.

3 Asymptotic dependency of chi-square statistics

Let us fix some step ∆ ∈ N, gram length L ∈ N and consider analogue of frequencies
(1):

f (L,∆)(q) =
N(L,∆)−1∑

i=0

1
{
xi∆+{1,...,L} = q

}
, q ∈ VL, N (L,∆) =

⌊
n− L

∆

⌋
+ 1. (5)

For ∆ = 1 and solid pattern J = {1, . . . , L} (1) and (5) are equivalent: f (L,1)(q) ≡
f {1,...,L}(q), q ∈ VL. Denote standard chi-square statistics based on frequencies (5):

γ(L,∆) =
∑
q∈VL

(f (L,∆)(q)− 2−LN (L,∆))2

2−LN (L,∆)
. (6)

For ∆ ≥ L the L-grams in sum (5) do not overlap, whence γ(L,∆) has asymptotic
chi-square distribution. For ∆ < L this asymptotic distribution is generalized
chi-square one. Consider two types of chi-square statistics based on (6):

M
(s,∆)
1 = γ((s+1)∆,∆) − γ(s∆,∆), D

(s,∆)
1 = 2s∆(2∆ − 1), s ≥ 0, (7)

M
(s,∆)
2 = γ((s+1)∆,∆) − 2γ(s∆,∆) + γ((s−1)∆,∆), D

(s,∆)
2 = 2(s−1)∆(2∆ − 1)2, s ≥ 1, (8)

where γ(0,∆) ≡ 0. Statistics M
(s,∆)
i of both types i ∈ {1, 2} have asymptotic chi-square

distributions with D
(s,∆)
i degrees of freedom. Statistics of the second type M

(s,∆)
2 are

asymptotically mutually independent for different s ≥ 1 under any fixed step ∆ ∈ N.
Statistic of the first type (7) for any fixed s ≥ 0 is related to the family MC(s,∆)

of stationary fully connected Markov chains of order s formed by non-overlapping
∆-blocks xi∆+{1,...,∆} ∈ V∆, i ∈ N0. Number of degrees of freedom equals

dimensionality (number of parameters) of this family: dim(MC(s,∆)) = D
(s,∆)
1 .

Similarly, statistic of the second type (8) for any fixed s ≥ 1 is related to the subfamily
UMC(s,∆) ⊂ MC(s,∆) of Markov chains with uniform stationary distribution of
s-grams of ∆-blocks, i.e., (s ·∆)-blocks x{1,...,s∆} ∈ Vs∆ of binary sequence.

Chi-square statistical test based on M
(0,∆)
1 is the standard test of uniform

distribution of non-overlapping ∆-blocks xi∆+{1,...,∆} ∈ V∆, i ∈ N0 (FIPS Poker test [5]

for ∆ = 4). Tests based on M
(s,1)
1 and M

(s,1)
2 are the NIST Serial tests [6] of types I

and II respectively (with parameter m = s + 1). Test based on M
(0,1)
1 is the Monobit

test. Test based on M
(1,1)
2 is asymptotically equivalent to the Runs test.

Introduce piecewise linear functions (see Figure 1):

ρ1(x) = max{0, 1−max{0, x}}, ρ2(x) = max{0, 1− |x|}, x ∈ R. (9)

Difference relation holds: ρ1(x) − ρ1(x + 1) ≡ ρ2(x). The following result describes
asymptotic dependencies between statistics (7), (8).
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Fig. 1. Functions (9)

Theorem 2. Let (i, j) ∈ {(2, 2), (1, 2), (1, 1)}. Asymptotic covariances of statistics
(7), (8) are as follows:

lim cov
{

M
(s,∆)
i ,M

(s′,∆′)
j

}
= C + 2

(2κ − 1)2

2κ

×
∑

m−≤m≤m+

ρi

(m
a
− s
)
ρj

(m
a′
− s′

)
2mκ, (10)

where κ = gcd(∆,∆′) (greatest common divisor), a = ∆/κ, a′ = ∆′/κ, C = 2(2κ − 1)
for (i, j) = (1, 1) and C = 0 otherwise, m+ = min{(s+ 1)a, (s′ + 1)a′} − 1,

m− =


max{(s− 1)a, (s′ − 1)a′}+ 1, (i, j) = (2, 2),

(s′ − 1)a′ + 1, (i, j) = (1, 2),

1, (i, j) = (1, 1).

Thus, asymptotic covariances of statistics (7), (8) are expressed as some weighted
dot products over integer lattice of shifts and stretchings of functions (9). For i =
j, (s,∆) = (s′,∆′) a simple calculation allows to verify that (10) gives variance of

chi-square distribution with D
(s,∆)
i degrees of freedom:

lim cov
{

M
(s,∆)
i ,M

(s′,∆′)
j

}
= lim var

{
M

(s,∆)
i

}
= 2D

(s,∆)
i .

4 Asymptotic shift sensitivity of block-based

chi-square statistics

Consider distortion of the binary sequence {xi} when few first symbols x1, . . . ,xδ are
missed, δ ∈ N0, and δ-shortened sequence xn1+δ goes to the input of statistical test
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Fig. 2. Asymptotic correlation coefficients (11), (12) plotted against δ (∆ = 7)

instead of full sequence xn1 (let us call it δ-distortion, δ = 0 means no distortion). It is
quite obvious that Monobit and Runs tests statistics are distorted insignificantly and
stay asymptotically equivalent to the undistorted ones (δ is fixed as n → +∞). But
the picture is completely different for the “block-based” tests that use non-overlapping
∆-blocks xi∆+{1,...,∆} ∈ V∆, i ∈ N0, for computation. Say, the test of uniform

distribution of non-overlapping 10-blocks (statistics M
(0,10)
1 ) uses the very different

sets of 10-grams under 6-distortion and without it:

undistorted case: (x1, . . . ,x10), (x11, . . . ,x20), (x21, . . . ,x30), . . . ;

6-distorted case: (x7, . . . ,x16), (x17, . . . ,x26), (x27, . . . ,x36), . . . .

Let us call two identically chi-square distributed random variables ξ1, ξ2 ∼ χ2
D

semi-independent, if there exist three mutually independent chi-square distributed
random variables η0 ∼ χ2

d, η1, η2 ∼ χ2
D−d, 0 ≤ d ≤ D, such that ξi = ηi + η0, i ∈ {1, 2}.

For d = 0 semi-independence is equivalent to independence, while d = D means
ξ1 = ξ2. Correlation coefficient of semi-independent chi-square distributed random
variables have the following simple form:

cor {ξ1, ξ2} =
cov {ξ1, ξ2}√

var {ξ1} var {ξ2}
=

d

D
.

The following result describes asymptotic sensitivity of statistics (7), (8) to δ-distortion
(shift sensitivity).

Theorem 3. For 0 ≤ δ ≤ ∆ undistorted and δ-distorted statistics (7), (8) are
asymptotically semi-independent with the following asymptotic correlation coefficients:

lim cor
{

M
(s,∆)
1 [xn1 ],M

(s,∆)
1 [xn1+δ]

}
=

2δ + 2δ
′ − 2

2∆ − 1
, (11)

lim cor
{

M
(s,∆)
2 [xn1 ],M

(s,∆)
2 [xn1+δ]

}
=

(2δ + 2δ
′
)(2∆ + 1)− 22+∆

(2∆ − 1)2
, (12)

where δ′ = ∆− δ.

270



Note that the values (11), (12) do not depend on parameter s. Their plots for ∆ = 7
are presented in Figure 2. These plots are very close to each other, and they indeed
are asymptotically equivalent (i.e., ratio goes to unity) uniformly over 0 ≤ δ ≤ ∆
as ∆ → +∞. The plots are minimal at “half-period” δ = ∆/2 (δ = (∆ ± 1)/2 for
odd ∆) and maximal at full period δ ∈ {0,∆}. The minimal values have asymptotics
cormin ∼

∆→+∞
C · 2−∆/2, where C = 2 for even ∆ and C = 3

2

√
2 for odd ∆. In the

neighborhood of half-period the plots tend to the scaled hyperbolic cosine. In the
neighborhood of full period adjacent values differ approximately twofold for large ∆.
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1 MCSS(s) model for discrete-valued time series

Let us introduce the notation: N, N0, Z, R, C are respectively the sets of positive
integers, nonnegative integers, all integers, real and complex numbers; (Ω,F ,P) is a
general probabilistic space; 1 {·}, P {·}, E {·}, L{·}, I(·) are respectively the indicator
function of an event, functionals of the probability of an event, the expectation of
a random variable, the probability distribution (law) of a random variable, a Fisher
information matrix w.r.t. the model parameter; 0n ∈ Rn, Idn ∈ Rn×n are respectively
a zero n-vector and the identity square matrix of order n; uba = (ua, ua+1, . . . , ub) is
a subvector in some sequence {ui} for a ≤ b; 〈u, v〉 =

∑
i uivi is the standard scalar

product of real vectors u = (ui), v = (vi).
The observed discrete-valued time series xt ∈ A on the probabilistic space (Ω,F ,P)

is determined for discrete time t ∈ Z and ranging over some N -state space A, N =
|A| < +∞. To avoid the well-known “curse of dimensionality” of fully connected
Markov chain let us introduce a parsimonious model for a d-variate Markov chain of
order s based on sufficient statistics developed in [1] (we call it an MCSS(s) model):

P
{
xt = x|xt−1

t−s = q
}

= E (q)(x; η) ::= exp
(
h

(q)
0 (x) +

〈
η, h(q)(x)

〉
− φ(q)(η)

)
, (1)

φ(q)(η) = ln
∑
x∈A

exp
(
h

(q)
0 (x) +

〈
η, h(q)(x)

〉)
, (2)

h(q)(x) =
(
h

(q)
i (x)

)m
i=1
∈ Rm, η = (ηi)

m
i=1 ∈ Rm, q ∈ As, m ≤ N s(N − 1). (3)

272



Relations (1)–(3) mean that each prehistory q ∈ As has its own exponential family E (q)

of conditional probability distributions L
{
xt|xt−1

t−s = q
}

on the support A, and all these
conditional probability distributions for all prehistories are determined by the common
canonic parameter η ∈ Rm, that is the parameter of model (1). The exponential family

E (q), q ∈ As, is determined by m + 1 functions {h(q)
i (·)}mi=0 on A; let us call h

(q)
0 (·)

the supporting function, and h
(q)
i (·), i ∈ {1, . . . ,m}, the base functions. The notation

E (q)(x; η) in (1) means the value of the probability function at point x ∈ A for the
probability distribution from the exponential family E (q) with the canonic parameter
η ∈ Rm.

Lemma 1 ( [1]). Model (1)–(3) determines an ergodic Markov chain with strictly
positive transition probabilities (1) and the unique nonsingular s-dimensional stationary
probability distribution of s-tuples:

π(s) = (π
(s)
qs1

)qs1∈As , π
(s)
qs1

::= P
{
xt−1
t−s = qs1

}
> 0, qs1 ∈ As, t ∈ Z. (4)

The Fisher information matrix of MCSS(s) model (1)–(3) w.r.t. the parameter
η ∈ Rm has the form:

I(η) ::=
∑
q∈As

π(s)
q

d2φ(q)(η)

dη2
∈ Rm×m. (5)

Note that MCSS(s) model (1)–(3) holds also for the case of a countable set A of
possible values xt, i.e. for N = |A| = +∞, but the ergodicity conditions are more
complex [2].

Let LINDU{. . . } be the condition of linear independence of functions in the braces
on their common support U . We will use the following regularity conditions.

• Regularity condition R.0:

LINDAs+1{h1, . . . , hm, 1q′ , q
′ ∈ As}, (6)

where 1
(q)
q′ (x) ::= 1 {q = q′}, q, q′ ∈ As, x ∈ A, is the function on As+1 = {(q, x) :

q ∈ As, x ∈ A} indicating that the prehistory q equals to some fixed prehistory
q′.

• Regularity condition R.1:

∃q ∈ As : LINDA{1, h(q)
1 , . . . , h(q)

m },

where 1(x) ≡ 1, x ∈ A.

The regularity condition R.1 is stronger than R.0. Note that upper bound (3)
for the number of parameters m is a necessary condition for R.0. Another necessary
condition for R.0 is that none of the base functions h

(q)
i (x) are constant w.r.t. x ∈ A.

Lemma 2 ( [1]). Under the regularity condition R.0 model (1) is identifiable.
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According to Lemma 2, under the regularity condition R.0 Fisher information
matrix (5) is strictly positively definite: I(η) � 0.

In the general case the condition LINDU{g1, . . . , gk} for any k ∈ N functions {gi :
U → R}ki=1 on some finite set U , k ≤ |U |, can be checked by checking the full rank
property of the matrix of their values: rank(gi(u))(i,u)∈{1,...,k}×U = k, which is a rather
difficult problem for large k = m + N s and |U | = |As+1| = N s+1 in (6). However,
a wide class of base functions {hi} guaranteed to satisfy R.0 can be constructed in a
simple form with some additional features (see Section 3).

Theorem 1 ( [1]). Let xT1 = (x1, . . . ,xT ) ∈ AT be an observed time series (1)–(3) of
length T ∈ N. The loglikelihood function for the MCSS(s) model has the form:

L(η) =

〈
η,

T∑
t=s+1

h(xt−1
t−s)(xt)

〉
− (T − s)

∑
q∈As

π̂(s)
q φ(q)(η) +

T∑
t=s+1

h
(xt−1
t−s)

0 (xt), (7)

π̂(s)
q =

1

T − s

T∑
t=s+1

1
{
xt−1
t−s = q

}
, q ∈ As.

Sufficient statistic for the MCSS(s) model consists of two vectors H and π̂(s):

H = (Hi)
m
i=1 ::=

T∑
t=s+1

h(xt−1
t−s)(xt) ∈ Rm, π̂(s) = (π̂(s)

q )q∈As ∈ RNs

. (8)

Note that the first term of the loglikelihood (7) is linear w.r.t. the model parameter
η, the second term (linear combination of φ(q)(η)) is nonlinear, and the third term
does not depend on η. According to Theorem 1 all information on (s + 1)-tuples of
the observed time series {xt} is gathered in the m-vector H of sufficient statistics (8),
while the estimator π̂(s) contains information on s-tuples only. Theorem 1 holds also
for the case of countable Markov chain (1)–(3) with N = |A| = +∞.

2 Statistical parameter estimation for MCSS(s)

Let us construct the Maximum Likelihood Estimator (MLE) by the loglikelihood (7)
of the observed time series xT1 = (x1, . . . ,xT ) ∈ AT of length T ∈ N:

η̂ = arg max
η∈Rm

L(η). (9)

Theorem 2 ( [1]). Under the regularity condition R.1 the loglikelihood (7) is
asymptotically (almost surely for large enough T ) strongly concave and has a unique
global maximum MLE (9), that is asymptotically consistent, asymptotically normal and
asymptotically efficient as T → +∞:

√
T (η̂ − η)

D−→
T→+∞

Nm(0m, I−1(η)), (10)

where the Fisher information matrix I(η) for the MCSS(s) model is determined by (5).

274



Due to asymptotical strong concavity of the loglikelihood (7), the MLE (9) can be
computed by the gradient ascent algorithm:

η(k+1) = η(k) + αk
d

dη
L(η)

∣∣∣∣
η=η(k)

, k ∈ N0, (11)

where αk > 0 is some step value for the k-th iteration. Due to the uniqueness
property of the global maximum in (9), there is an arbitrariness in the choice of initial
approximation η(0) ∈ Rm in (11), so we can use zero initial vector η(0) ::= 0m or
some another initial statistical estimator η(0) ::= η̃. The computational complexity
of algorithm (11) is O (N ·min{T,N s+1}) [1]. Besides, this computational complexity
depends on the computational accuracy, that is determined by the parameter ε� 1 of
the stop condition for the gradient ascent algorithm (11): L(η(k+1))−L(η(k)) < ε. After
fulfilment of the stop condition algorithm (11) stops and returns the last iteration value
η̂(ε) ::= η(k+1) with the asymptotics

∥∥η̂(ε) − η̂
∥∥ =
ε→0
O
(√

ε
)

for the error of optimization

process (9), (11).

3 Construction of base functions for MCSS(s)

Let us assume that A forms an abelian group w.r.t. some operation “+”. We denote
by 0 ∈ A the neutral (zero) element of the group (A,+), and by −a ∈ A the inverse
element for a ∈ A. Introduce some auxiliary notation:

J ::= {j = (ji)i∈N0 ∈ A∞, j0 6= 0, ∃i∗ : ji ≡ 0, i > i∗} ⊂ A∞ (12)

is the subset of infinite A-valued sequences with a zero tail and a nonzero first element
(the set of indices for the base functions);

J(s) ::= {j = (ji)i∈N0 ∈ J, ji ≡ 0, i > s}, s ∈ N0; (13)

is the subset of indices that we call s-indices (J(s) ⊂ J(s′), s < s′, ∪s∈N0J(s) = J);
Γ ::= {z ∈ C : |z| = 1} is the multiplicative group of all complex numbers z ∈ C with
the absolute value |z| = 1 (the circle group); χ(·, ·) : A × A → Γ is the function with
the following properties (its existence follows from the character theory [3]):

• it is a group homomorphism A→ Γ called the character [3] under any one of two
arguments fixed:

χ(a, b+ b′) = χ(a, b)χ(a, b′), χ(b+ b′, a) = χ(b, a)χ(b′, a), ∀a, b, b′ ∈ A;

• all the characters χ(a, ·) are distinct for a ∈ A, i.e., ∀a 6= a′, a, a′ ∈ A, ∃b ∈ A,
χ(a, b) 6= χ(a′, b); similarly, all the characters χ(·, a), a ∈ A, are distinct;

AINV ::= {a ∈ A, a + a = 0} ⊂ A is the subgroup of involutive elements; σ(·) :
A\AINV → {±1} is any arbitrary odd function on the subset of non-involutive elements:
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σ(−a) = −σ(a), a ∈ A \ AINV; χ∗(·, ·) : A × A → R is the following real-valued
modification of the complex-valued function χ(·, ·):

χ∗(a, b) ::=


χ(a, b), a ∈ AINV,
χ(a, b) + χ(−a, b)√

2
, a 6∈ AINV, σ(a) = +1,

χ(a, b)− χ(−a, b)√
2

√
−1, a 6∈ AINV, σ(a) = −1,

a, b ∈ A. (14)

Define the following set of harmonic base functions (harmonic set):

h
(q∞1 )
j (q0) ::=

∞∏
i=0

χ∗(ji, qi), j ∈ J, q ∈ A∞, (15)

where the infinite product converges because of tail of unit factors by definition of
the set J: ∃i∗, ji ≡ 0, i > i∗, χ∗(ji, qi) ≡ χ∗(0, qi) ≡ χ(0, qi) ≡ 1, χ(0, ·) ≡ 1 is the
principal character. For any s ∈ N0 and j ∈ J(s) we can correctly use the function

h
(q∞1 )
j (q0) : A∞ → R as the function of the form As+1 → R: h

(qs1)
j (q0) ::= h

(q∞1 )
j (q0),

qs0 ∈ As+1.
Let G ⊂ J, |G| < +∞, be any finite subset of indices, s∗(G) ::= min{s ∈ N0 :

G ⊂ J(s)} be its order, MCSS∗(G) be the model (1)–(3) of order s = s∗(G) with zero

supporting function h
(q)
0 (·) ≡ 0 and m = |G| base functions hj, j ∈ G.

Theorem 3 ( [1]). For any finite subset of indices G ⊂ J the model MCSS∗(G) satisfies
the regularity condition R.0 and has identity Fisher information matrix (5) at the zero
vector parameter η = 0m: I(0m) = Idm. For any s ∈ N0 the model MCSS∗(J(s)) is
equivalent to the fully connected Markov chain MC(s) of order s.

Harmonic base functions (15) can be used as an “elementary bricks” for the
construction of parsimonious Markov models. These bricks may be taken sequentially
from some previously fixed bigger set G∗ ⊂ J in a data-adaptive way by minimizing
Bayesian information criterion (BIC) value BIC(G) = |G| · lnT − 2L on each
step, where L is the maximum loglikelihood value of the MCSS(s) model for the
time series xT1 (L = L(η̂) in terms of (9)). The computational complexity of this
data-adaptive model construction algorithm is O (|G∗|2) operations. In particular,
for G∗ = J(s) (construction of parsimonious Markov model with bounded order)
O (|J(s)|2) = O

(
N2(s+1)

)
.
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1 Introduction

Stochastic processes with changing parameters, in particular, processes with change
points, are widely used to approximate real nonlinear processes in different applications.
From a statistical point of view, a change point is a place or time point such that the
observations follow one distribution up to that point and another distribution after that
point. Multiple change points problems can also be defined similarly. Processes with
a single change point are usually used to simulate a withdrawal from stable conditions
or an equipment error; whereas processes with multiple change points describe real
processes with several states, where switches between states occur in unknown instants.

In queue theory, processes with multiple change points are applied to describe queue
systems with different regimes of customer arrivals; as the simplest model, a process
with two states corresponding to ”usual” and ”peak” time can be considered. These
two states are characterized of different rates of arrivals; in the first case, events occur
in general much less than in the second. When the switching times are controlled by
a Markov chain and the flow of events have Poisson distribution, the model is named
Markov-modulated Poisson process (MMPP).

2 Problem Statement

The Markov-Modulated Poisson Process (MMPP) is a doubly stochastic Poisson
process whose rate varies according to a Markov chain. We consider a process with
two rates determined by the states of a non-observable controlling Markov chain. The
sojourn time in state {j}, j ∈ 1, 2, is determined by exponentially distributed random
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variables xi, i = 1, 2, ... with parameters µj, where xi for odd i and for even i are
distributed with different parameters.

Denote x1 + ... + xm as Tm and T0 = 0. At the interval [Ti−1, Ti) one can observe
a Poisson process with rate λj, where j is the state of the controlling Markov chain at
the interval. The instants Ti can be considered as the change points of the observed
Poisson process, where the rate of the process changes. We denote the arrival times of
the observed process as tk, k = 1, 2, ..., t0 = 0.

The problem is to estimate the parameters {λ1, λ2, µ1, µ2} by the observations tk.

3 Parameter Estimation

Consider the process {τi}i≥1, where τi = ti − ti−1 is the length of the i-th interval
between arriving events in the observed flow. The values τi for MMPP are independent
and exponentially distributed with one of two possible parameters. It allows us
to use the hyperexponential distribution as a model for the observed data. The
hyperexponential distribution has the following density function

f(τ) = pλ1e
−λ1τ + (1− p)λ2e

−λ2τ , p ∈ (0, 1), (1)

which is a mixture of two exponential distributions.
To estimate the parameters λ1, λ2 and p of the hyperexponential distribution,

we propose a combined estimation on the basis of the method of moments and
the maximum likelihood method. Let us have a sample of the {τ1, ..., τN} obeyed
distribution (1). First we calculate two first moments

m1 =
1

N

N∑
k=1

τk, m2 =
1

N

N∑
k=1

τ 2
k , (2)

and equating them to the corresponding theoretical moments, one obtains the equations

m1 =
p

λ1

+
1− p
λ2

, m2 =
2p

λ2
1

+
2(1− p)
λ2

2

(3)

Introducing the following notations x = p
λ1

, y = 1−p
λ2

one obtains the quadratic equation

x2 − 2m1px+ p

(
m2

1 −
1− p

2
m2

)
= 0.

If the inequality m2− 2m2
1 ≥ 0 holds true then the equation has two roots. Taking the

largest one as x one can obtain the values λ1, λ2 as functions of the parameter p

λ̂1 =
1

m1 +

√
1− p
p

√
m2

2
−m2

1

, λ̂2 =
1

m1 −
√

p

1− p

√
m2

2
−m2

1

. (4)
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It should be noted that λ̂1 < λ̂2 because we choose the largest root of the quadratic
equation for x. If one takes the smallest root for x, he obtains the same estimators for
λ1, λ2, except of λ̂2 < λ̂1.

As both roots should be positive, the parameter p should obey the inequality:

m1 −
√

p

1− p

√
m2

2
−m2

1 > 0.

From the equation, one obtains

p <
2m2

1

m2

. (5)

Next we define the log-likelihood function

L(p) =
N∑
n=1

log
(
pλ1e

−λ1τn + (1− p)λ2e
−λ2τn

)
, (6)

where the parameters λk are calculated according (4). Maximizing the function L(p)

on p, where 0 < p <
2m2

1

m2
and using relations (4) one obtains the estimators of the

parameters λk, k = 1, 2.
Value m2 − 2m2

1 where m1, m2 are defined equation (3) satisfy the following
properties when N →∞

E
(
m2 − 2m2

1

)
→ 2p(1− p)

(
1

λ1

− 1

λ2

)2

. (7)

The variance of m2− 2m2
1 has the following form, where C is a constant depending on

the process parameters:

V ar
(
m2 − 2m2

1

)
=
C

N
+O

(
1

N2

)
. (8)

4 Change-point Detection Algorithm

Previously, we developed a cumulative sum algorithm for the detection of changes in
the Poisson process when the parameters λj are known. Define statistics zi as the
logarithm of the likelihood ratio for exponential distribution

zi = ln

(
λ2 exp(−λ2τi)

λ1 exp(−λ1τi)

)
= ln

λ2

λ1

− (λ2 − λ1)τi. (9)

Let λ(t) be the rate of the arrival process at the moment t. Introduce two hypothesis:

Hj = {λ(t) = λj, j = 1, 2}. (10)

Suppose λ1 < λ2 and denote λ2/λ1 by δ, where δ > 1. The statistics zi have the
following form:

zi = ln δ − λ1(δ − 1)τi. (11)
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Under the hypothesis Hj, the statistics have the following properties:

E [zi|H1] = ln δ − (δ − 1) < 0;

E [zi|H2] = ln δ −
(
δ − 1

δ

)
> 0,

(12)

hence, the mean of statistics zi changes the sign with the change the rate of the process.
In our algorithm, we use estimators (4) obtained above instead of the parameter

values. We introduce positive values h(1), h(2) as the algorithms thresholds and
construct the cumulative sum Si which is recalculated at the instants of arrivals:

S0 = 0;

Si =

{
max{0, Si−1 + ci−1zi}, if Si−1 + ci−1zi < hi, i ≥ 1;

0, if Si−1 + ci−1zi ≥ hi, i ≥ 1;

zi = ln
λ̂2

λ̂1

− (λ̂2 − λ̂1)τi;

c0 = 1;

ci =

{
ci−1, if Si−1 + ci−1zi < hi, i ≥ 1;
−ci−1, if Si−1 + ci−1zi ≥ hi, i ≥ 1;

hi =

{
h(1), if ci−1 = 1;
h(2), if ci−1 = −1.

(13)

If ci = 1, the sum detects the increase in the rate, i.e. the change in hypothesis from
H1 to H2 when it reaches the threshold h1; if ci = −1, the sum detects the decrease in
the rate when it reaches the threshold h2.

Let the sequence {σm}m≥0 be the sequence of the instants when the cumulative sum
reaches the threshold h, i.e.

σ0 = 0;
σm = min {ti > σm−1 : Si ≥ h} , m ≥ 1.

(14)

Consider a sequence {nm}m≥0 associated with the sequence {σm}m≥0 as follows

n0 = 0;
nm = max {ti ≤ σm : Si > 0, Si−1 = 0} , m ≥ 1.

(15)

Thus, the instant nm is the first instant when the cumulative sum becomes positive to
reach the threshold.

The algorithm for change-point detection is described as follows. Calculate the
cumulative sum given by equation (13). Then construct the sequences {σm}, {nm}
defined by equations (14), (15). If for the last instant nm one has m = 2l + 1, one
sets n2l+2 = tN ; if m = 2l, one sets n2l+1 = tN . Here, the odd instants n2l+1 are the
estimators of the instants when the rate changes from λ1 to λ2, and the even instants
n2l+2 are the estimators of the instants when the rate changes from λ2 to λ1. So, at
intervals [n2l, n2l+1] we consider the Markov chain to be in the first state; when at
intervals [n2l+1, n2l+2] we consider it to be in the second state.
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Online controlled experiments, or A/B tests, are a reliable tool for
data-driven decision making in industrial applications. We discuss several applied
statistical problems related to the A/B testing at scale. The list of problems
includes detecting inherent biases in samples, reducing metric variance to
accelerate A/B tests, and improving statistical power by multivariate hypothesis
testing. For each problem, we propose a practical solution and show the results
in numerical experiments.

Keywords: A/B tests; data-driven decision making; variance reduction;
multivariate hypothesis testing.

1 Introduction

Online controlled experiments, or A/B tests, are the most reliable way to assess the
impact of product changes and make data-driven business decisions [5]. In an A/B test,
customers serve as a randomization unit, and traffic is randomly assigned with a given
allocation ratio between a control variation and one or more treatment variations. For
each randomization unit, the values for a list of business metrics are computed; and
these values are treated as random variables. Statistical hypotheses, typically about
the equality of means, are then tested for the collected samples.

Industrial A/B tests have unique features. The first one is scale: tens of thousands
of tests per year need to be analyzed, with the sample size ranging from thousands to
millions of units per test, and hundreds of metrics computed in each test. Second, the
samples accumulate incrementally as customers interact with a given splitting scheme.
As a result, the sample size is not known in advance, and the experimental design must
include both a power analysis to determine the required sample size and an estimate
of how many days the experiment should last.

In the present report, we discuss statistical tools, developed at T-Bank, for A/B
testing at scale. In particular, we focus on several statistical problems closely related
to this issue.

2 Considered problems

Assume that customers are randomly assigned to one of two variations and a product
change with potential business impact is introduced. Suppose that this change occurs
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at the specific time t and affects only one of the variations, hereafter referred to as
the test variation; while the other variation remains unaffected and is referred to as
the control variation. Let T be a binary indicator variable such that T = 0 denotes
assignment to the control variation and T = 1 denotes assignment to the test variation.

For each k = 1, . . . ,M , denote by Y +
k the k-th business metric computed over a

time interval following the time t, and by Y −k the same metric computed over a time
interval preceding the time t. For each k, we test the hypothesis

H0,k : E[Y +
k |T = 1] = E[Y +

k |T = 0]

against the two-sided alternative

H1,k : E[Y +
k |T = 1] 6= E[Y +

k |T = 0].

Rejection of H0,k provides evidence that the product change has a measurable impact
on the k-th business metric.

2.1 Testing whether the sample is not inherently biased

However, mainly due to issues with the randomization process, the business metrics
could differ significantly between the variations even before the experiment begins.
Such experiments are called inherently biased, and valid statistical inferences cannot
be made from their results [2]. More precisely, if these biased experiments remain
undetected, they can lead to wrong business decisions.

We are able to formalize this applied business problem as a hypothesis testing
problem as follows. To detect biased experiments, we test the following set of hypothesis

Ĥ0,k : L[Y −k |T = 1] = L[Y −k |T = 0]

against the corresponding two-sided alternatives, where L[Y −k |T = i] is the distribution
law of Y −k conditional on T = i.

To test Ĥ0,k at given k, we develop an effective combined criterion that merges
the advantages of the Anderson–Darling test and the chi-squared test. The proposed
criterion controls the Type I error rate and exhibits high power for both discrete and
continuous metrics.

2.2 Variance reduction techniques

By accelerating experiments, one can assess more product changes in the same amount
of time. Note that the main bottleneck is the time required to collect samples, not
the time required to compute business metrics. Therefore, the most effective way to
accelerate A/B testing is to reduce the required sample size [5]. This, in turn, can be
achieved by reducing the variance of the target business metrics.

Among variance reduction techniques, we focus on a method that shows good
performance according to our numerical experiments. Specifically, let Y + be the target
metric, and let X−l for l = 1, . . . , n be a set of other metrics, which are called covariates.
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The superscripts + and − keep the notation introduced above, indicating the post- and
pre-experimental periods, respectively. Consider the linear transformation

Ŷ + = Y + −
n∑
l=1

θlX
−
l ,

where θ = (θ1, . . . , θn) ∈ Rn. It is easy to show that

D[Ŷ +] ≥ (1− ρ2)D[Y +],

where ρ2 =
(
yTS−1y

)
/D[Y +], and S = [sij] is the symmetric positive definite matrix

with the entries sij = cov(X−i , X
−
j ), and y is the n-component column with the entries

yj = cov(Y +, X−j ). Moreover, the equality holds if and only if Sθ = y. Thus, by
choosing θ = S−1y, one achieves a variance reduction factor of (1 − ρ2) by leveraging
the pre-experimental data. Note that we are able to choose the set of covariates so
that the matrix S is positive definite and hence non-singular.

This variance reduction technique is justified in the context of A/B experiments
if the hypothesis testing for the transformed metric Ŷ + is equivalent to that for the
original metric Y +. This equivalence holds under the condition

E

[
n∑
l=1

θlX
−
l |T = 1

]
= E

[
n∑
l=1

θlX
−
l |T = 0

]

that is satisfied by unbiased experiments (see Section 2.1).
Note that the proposed method generalizes the well-known CUPED approach [1;

6] Controlled Experiments Using Pre-Experiment Data which employs only a single
covariate. Likewise, we refer to the proposed method as Multi-CUPED.

2.3 Testing the multivariate hypothesis

In industrial A/B tests, hundreds of business metrics are computed for each test.
Consequently, one tests the family of null hypothesis H0,k for k = 1, . . . ,M , where
M can be very large. Testing multiple hypotheses reduces statistical power due to the
need for Bonferroni-type corrections or other adjustments to control the family-wise
error rate.

However, in certain business scenarios one can test the hypothesis

H0 : E[Y +
k |T = 1] = E[Y +

k |T = 0] for all k = 1, . . . ,M

against the alternative

H1 : ∃k∗ : E[Y +
k∗
|T = 1] 6= E[Y +

k∗
|T = 0].

This problem can be equivalently formulated as testing equality of mean vectors for
the multivariate random variable Y = (Y +

1 , . . . Y
+
M ). This framework is known as

multivariate hypothesis testing [3]. The statistical tests for the multivariate hypothesis
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deal with multivariate random variables and account for pairwise correlations through
the covariance matrices. These tests, for example, the Hotelling T-squared test,
often assume that the covariance matrices are equal among the variations, while this
assumption does not hold in applications.

To test H0, we implement a criterion based on the work [4]. We show that the
proposed criterion controls the Type I error rate in all scenarios, including those with
unequal sample sizes, and those with unequal covariance matrices between variations.
Using numerical experiments with both real and synthetic data, we demonstrate when
the proposed criterion outperforms metric-wise T-tests with corrections for the multiple
testing.

3 Conclusion

In this report, we demonstrate how business-motivated problems arising in industrial
A/B testing can be effectively formalized as precise mathematical problems and
subsequently solved with statistical methods. Several statistical problems are discussed,
including detecting inherent biases in samples, reducing metric variance to accelerate
A/B tests, and improving statistical power by multivariate hypothesis testing. For each
problem, we propose a practical solution and show the results in numerical experiments.
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The work is focused on studying methods and models that describe the
patterns of design and production of lightweight parts. Additionally, it involves
constructing a functional and structural model for the hardware implementation
of graphical construction of parts and cells within them. One of the key challenges
in manufacturing lightweight parts with a cellular structure is ensuring the
required technical and operational properties. To address this issue, it is proposed
to utilize the capabilities of engineering stress-strain state analysis of the resulting
parts using SolidWorks API methods. The work was carried out as part of a
research project on GB 21-266 “Marketing support for industrial enterprises of
the Republic of Belarus in the context of regional integration and digitalization
of the global economy” for 2020-2025.
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1 Introduction

In the context of the digital economy, integrating information technologies into all
aspects of life is becoming increasingly important, particularly in developing software
packages for digitalizing project tasks [1]. Additive manufacturing and IT-technologies
for automating and controlling this process are key technologies of the fourth industrial
revolution.

Additive manufacturing is a promising industrial development, fundamentally
changing part design. Additive technologies (AT) enable the creation of complex and
functionally optimized products that traditional methods cannot produce, and they
virtually eliminate post-processing.

Replacing monolithic parts with “lightweight” ones featuring hollow cell regions is
a crucial approach to reducing material consumption [2]. In a number of high-tech
industries, such as aircraft and astronautics, biomedicine and implantology, robotics,
and innovative mechanical engineering, reducing product weight has become critically
important. This reduction significantly impacts product efficiency, functionality, and
cost-effectiveness.

The increasing complexity of cellular structures and their design in CAD
(Computer-Aided Design) systems highlights the need for developing new methods

285



and tools to automate the design of cellular structures. This is particularly relevant
for structures based on cylindrical cells [3]. Additionally, sections of cylindrical cells
and straight polyhedral cells are topologically equivalent, allowing cylindrical cells to
serve as a reference when compared with polyhedral cells.

The primary objective was to develop a methodology for computer-aided design of
parts using cylindrical cells. This methodology includes analyzing the technical and
operational properties of the parts, as well as programming models and algorithms for
their design, and performing engineering analysis of the designed parts.

2 General characteristics of the used approach

To automate multiple changes to the original geometric model of a solid part and
integrate cellular structures into it based on engineering analysis, it is proposed to
use SolidWorks CAD in combination with C # libraries for dynamic management of
system components via the API.

As a result, a Windows Forms-based software tool was developed, which, using
SolidWorks API methods, automates the construction of a test part sample in the
form of a parallelepiped and creates an internal cellular structure (e.g., cylindrical)
without altering the external geometric characteristics. This reduces the part’s total
mass while maintaining its technical and operational properties.

The tool’s functionality allows dynamic control of the cylindrical cellular structure’s
geometric configuration by setting parameters, automatically performs engineering
analysis of the part in a CAD environment, and exports resulting output data values.
Ultimately, it automates multiple studies on the effect of embedded cellular structures’
geometric configuration on the part’s stress-strain state.

Additionally, to ensure the computer-aided design process, the system includes a
number of special features: control over cell visualization, access to rebuilding and
deleting the body and cells, the ability to create an analysis study for stress-strain
state parameters of the part, including the choice of fixation side and force application,
as well as the force itself, access to stress and deformation data, and other technical
and operational characteristics.

Constructing a test part in the form of a parallelepiped is a versatile option because
any part can be identified as having a certain area of this shape, for which a cellular
structure can be calculated. On the other hand, a parallelepiped-shaped sample is a
standard part for conducting physical experimental compression work.

The study of cell design methods allowed us to choose two construction directions
with different initial data: the construction of cylindrical cells according to a known cell
radius, or according to a known constant volume occupied by the cellular structure, i.e.
by the percentage of the volume of material to be removed from the part. To fine-tune
the creation of cylindrical cells, the designer is given the opportunity to change the
construction parameters: select the faces for fixing the part and the face of the applied
force, as well as the magnitude of the applied force itself, set any values of radius and
volume, change the values of height and radius separately for each cell or not to build
it at all.
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For the correct construction of a structure with cylindrical cells, two problems were
solved for calculating the parameters necessary for constructing a cellular structure:
the first one is based on a given radius of one cell, and the second one is based on a
given volume of the cellular structure and the number of cells.

To construct a cellular structure, it is necessary to calculate the wall thicknesses
between the cells and between the cell faces and the original part. For the first task
(building cells by radius), it will be sufficient to consider building the bases of 3D cells,
i.e. circles, within a rectangle defined by the length and width of the body, since in
this case the height of the cells is a constant value and does not affect the calculation.

Thus, the values of wall thickness in length and width are equal:

l1 =
b− 2rn1

n1 + 1
(1)

l2 =
a− 2rn2

n2 + 1
(2)

where a and b are the length and width of the body, n1 and n2 are the number of
cells in the length and width directions, respectively, and r is the radius of a single cell.

In the second task, we need to keep the total volume and height of the cells
constant, as well as keep the number of cells constant. However, the dimensions of
the cylinders will change. To automate the construction of this cellular structure, we
need to calculate the radii of each cylinder as well as the thickness of the walls between
cells and between cell faces and the original body. The formulas for calculating the
thickness of walls l1 and l2 will be:

l1 =
b− 2n1

n1 + 1
·
√
V 0

hole

πhn
(3)

l2 =
a− 2n2

n2 + 1
·
√
V 0

hole

πhn
(4)

where n is the number of holes and h is the height of the hole.
The algorithm for constructing a cellular structure is implemented in the

CellsDrawer.cs class, the drawCells() method. Drawing a digital model of a cellular
structure consists of performing the following basic procedures: selecting a face to
create a sketch; creating a sketch; building circles in the sketch that define the bases
of 3D cells; exiting the sketch; cutting out the material using the “Elongated Cut”
operation. One of the main methods for implementing these procedures using the
Solid Works API is described as follows (mas1, mas2, and mas3 are arrays of cell
existence, radii, and height, respectively):

3 Main results and analysis

An example of designing a part with a cellular structure, evenly filled with cylindrical
cells, using the developed software is shown in Figure 1.
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Fig. 1. Construction of a part with a cellular structure

After creating a 3D model of a part with cellular structures, an engineering analysis
is performed. The process of engineering analysis consists of performing the following
main stages: creating an instance of the study; specifying the part material; fixing the
faces that must remain stationary during operation; applying loads; building a finite
element grid for a given 3D model; launching and performing engineering calculations;
recording the output parameters of calculations. The results of the study obtained in
SolidWorks are a study of the stress-strain state of a monolithic body and a body with
a constructed cellular structure (Figure 2). The stress and strain indicators are entered
in the table on the form (Figure 3):

Fig. 2. Research of a part with a cellular structure

In the course of experimental studies, a periodic pattern of stress changes was
established with a decrease in cell size and a simultaneous increase in their number.
Presumably, this pattern is a consequence of the significant influence of the wall
thickness between the cells relative to the size of the cell itself (the higher the ratio of
these values, the closer the stress and strain values tend to the corresponding values
for a monolithic part), as well as the consequence of the different distribution of a
given load on the cells, which depends on the size of the cells. To study this theory,
graphs of stress and strain dependencies on the percentage of wall thickness to cell
radius were constructed (Figure 4), and an experiment was conducted to increase the
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Fig. 3. Research results

wall thickness to which force is applied by reducing the radii of the outermost row of
cells (the experimental cellular structure contains 98 cells) and the results of the study
of this cellular structure were obtained.

The data obtained suggest that, indeed, with an increase in wall thickness from
1mm to 3mm, the stress and strain values decreased, namely by 30.2% and 32.7% of
the initial values, respectively. The updated data is shown in the graphs in Figure 4.

Fig. 4. Graphs of stress and strain dependence on the percentage of wall thickness to cell
radius on a different number of cells (lower axis)

4 Conclusion

The developed software makes it possible to automatically carry out multiple studies
of test parts with cylindrical cells, the configuration of which can vary depending on
the size, number of cells, as well as on the specified volume per cellular structure, vary
the parameters of the loading schemes of the obtained models of parts, and obtain
the values of engineering analysis of the stress-strain state of the parts. Preliminary
experimental studies have been conducted on the effect of various configurations of
cylindrical cell structures and wall thickness on the stresses and deformations of a
particular test part during loading.

The data obtained make it possible to set the task of finding the optimal
configuration of a cellular structure when designing it in practical conditions, as well
as the possibility of determining the boundaries in which the area of solving this
optimization problem is located [4]. The optimization criteria, as well as the limits
of the parameters of the stress-strain state of the part, must be set by the customer [5].
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Thus, the implementation of additive technologies in industrial production,
including the sequential design of parts with cellular structures, allows for a significant
material savings while controlling the flexibility and strength characteristics of the
part and reducing the weight of both intermediate and final products. This is
particularly important during the transition to Industry 4.0 technologies. In the
process of digital transformation of the economy, we should take into account the
experiences of advanced industrial countries [6] and implement these technologies to
achieve sustainable economic growth.
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1 Introduction

There are many processes in environment, that can be described only by stochastic
processes with jumps. The Poisson process is often used to model processes with
jumps. But it is often necessary to construct a more complex model than the model
directly containing the Poisson process. In such cases, stochastic differential equations
are often used (see, e.g., [1; 2]).

The object of study of this work is an equation of the form:

Xt = X0 +

t∫
0

α(Xs−, s)ds+

t∫
0

β(Xs−, s)dP̃s, (1)

where t ∈ [0, 1], X0 ∈ R, P̃t = Pt − λt is the compensated Poisson process, Pt is the
Poisson process with a parameter λ ∈ R. The stochastic integral at the right side is
the Itô integral

This report propose the approximate formula, which can be used for the
approximate calculation of the mathematical expectations of functional of the form
E[G(X(·))], where X ≡ Xt is a solution of the equation (1). Here and below the symbol
(·) is used to indicate, that G may depends on a trajectory of the solution of the
equation.
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2 Approximate formula

In this work we assume, that the following conditions are met:

|α(y1, t)− α(y2, t)|2 + |β(y1, t)− β(y2, t)|2 ≤ K1|y1 − y2|2,
|α(y1, t)|2 + |β(y1, t)|2 ≤ K2(1 + |y1|2),

where K1, K2 ∈ R are constants, y1, y2 ∈ R, and that G has a Fréchet derivative, which
we denote by G′, and |G′(x)| ≤ C, where C ∈ R, for any x ∈ R.

The proposed approximate formula has the form (see [3]):

EG ≈ J(G) =
2∑

j1,j2=1

Aj1Bj2

1∫
0

1∫
0

1∫
0

G[Yj1,j2(·, u1, u2, u3)]du1du2du3, (2)

where
A1 + A2 = 1,

a1,1 =
1

2

(
1−

√
−A2

A1

)
, a1,2 =

1

2

(
1 +

√
−A2

A1

)
,

a2,1 =
1

2

(
1−

√
−A1

A2

)
, a2,2 =

1

2

(
1 +

√
−A1

A2

)
,

B1 =
1

2π(R)

(
1 +

1√
1 + 4π(R)

)
, B2 =

1

2π(R)

(
1− 1√

1 + 4π(R)

)
,

b1 =
1

2

(
1−

√
1 + 4π(R)

)
, b2 =

1

2

(
1 +

√
1 + 4π(R)

)
,

Yj1,j2(t) ≡ Yj1,j2(t, u1, u2, u3) = X0

α

(
X0 + α

(
X0 + β(X0, u3)ρ

(2)
j2

(u2−, u3), u2

)
ρ

(1)
j1,2

(u1−, u2) +

β
(
X0 + α(X0, u2)ρ

(1)
j1,2

(u3−, u2), u3

)
ρ

(2)
j2

(u1−, u3), u1

)
ρ

(1)
j1,1

(t, u1) +

α

(
X0 + α

(
X0 + β(X0, u3)ρ

(2)
j2

(u1−, u3), u1

)
ρ

(1)
j1,1

(u2−, u1) +

β
(
X0 + α(X0, u1)ρ

(1)
j1,1

(u3−, u1), u3

)
ρ

(2)
j2

(u2−, u3), u2

)
ρ

(1)
j1,2

(t, u2) +

β

(
X0 + α

(
X0 + α(X0, u2)ρ

(1)
j1,2

(u1−, u2), u1

)
ρ

(1)
j1,1

(u3−, u1) +

α
(
X0 + α(X0, u1)ρ

(1)
j1,1

(u2−, u1), u2

)
ρ

(1)
j1,2

(u3−, u2), u3

)
ρ

(2)
j2

(t, u3),
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and
ρ

(1)
j1,k

(s, uk) = aj1,k1[uk,1](s), k = 1, 2, ρ
(2)
j2

(s, u3) = bj21[u3,1](s),

1[uk,1](s) =

{
1, s ∈ [uk, 1],

0, overwise.

The accuracy of the proposed formula was assessed.
Theorem. The following estimate of the error of the formula (2) is valid

E[G]− J(G) ≤ 4

3
C

2∑
j1,j2=1

|Aj1||Bj2|
√
K2(1 +X2

0 )t3/2 + O(t3/2).

The example of application of the formula (2) is proposed.
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estimate financial derivatives we construct an approximation of replicating
portfolio that minimizes an expectation of penalty function.

Keywords: replicating portfolio; (B,S)-market; derivatives pricing.

1 Introduction

In the first part we consider one-period market model with discrete time and finite
number states of the world. The approximation of replicating portfolio is built as
the portfolio that minimizes the expectation of penalty function. In the second part
we analyze the multi-period model with discrete time and use dynamic programming
method to built the approximation portfolio.

2 One-period Model

We begin with a finite number N of risky securities or assets S1, . . . , SN , and B0 = S0

is riskless security (bank account) [2]. In this part we consider only their values at
times 0 and 1. At time 0 the investors know the time-0 values, but the time-1 values
are random variables on probability space (Ω,F , P ). The time-0 prices of the securiries
are assumed to be strictly positive. Since Sj(0, ω) is the same for all ω ∈ Ω we simply
denote this common value as Sj(0) and consider the row vector

S(0) = [S1(0), . . . , SN(0)]T .

The time-1 prices are random variables defined on probability space (Ω,F , P ). Let
us denote the vector

S = S(1) = (S1, . . . , SN).

Investors select a portfolio of the assets at time 0. The number of the units of the
asset j held from the time 0 to time 1 is denoted by the numbers θj, j = 0, . . . , N . If θj
is positive, θj units of security j are purchased. If θj is negative, |θj| units of security
j are sold short. We denote the portfolio as the column (trading strategy)

θ =


θ1

θ2
...
θN

 .
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Then the value of corresponding portfolio at time 0 is

S(0)θ = θ0S0(0) + θ1S1(0) + · · ·+ θNSN(0).

The time-1 value of this portfolio will depend on the state of nature. If the state ω
occurs, then the time-1 value is

θ0S0(1, ω) + θ1S1(1, ω) + · · ·+ θNSN(1, ω).

Let we have the derivative security f(Sj(1, ω)), where f is a measurable function.
The replicating portfolio θ for it is determined as the portfolio for which for all ω

f(Sj(1, ω)) = θ0S0(1, ω) + θ1S1(1, ω) + · · ·+ θNSN(1, ω).

If our market is arbitrage-free, then the value of this portfolio at time 0 is the
derivative price at time 0. If our market is complete, then this price is unique.

Let us denote the penalty function as U(x, y). We propose to evaluate derivative
price as the time-0 value of the portfolio that minimizes expected value

E(U(f(Sj(ω), θ0S0(ω)) + θ1S1(ω) + · · ·+ θNSN(ω)))→ min
θ
. (1)

As the functions U(x, y) we can take U(x, y) = (x − y)2, U(x, y) = |x − y| or
others. In the case of the two first functions, if the minimum expectation is 0, then θ
that minimizes the expectation is the replicating portfolio. Otherwise we have some
approximation. Let us denote the covariance matrix S by Σ.

Theorem 1. If the function U(x, y) = (x − y)2, then the approximating portfolio,
minimizing the left side of (1) is given by the equality

θ = Σ−1E(f(Sj, S)),

and the derivative price approximation at time 0 is

f(Sj) = Σ−1E(f(Sj, S)) · S(0).

The proof is based on differentiation of the left hand side of (1) w.r.t. θ and equating
the derivatives to 0. As the measure P we can use empirical distribution.

3 The Multi-period Model

A construction of an approximation of the replication portfolio in multi-period model
with two assets was considered by authors in [3]. In the situation with N +1 assets the
approximating portfolio could be constructed using the dynamic programming method
and conditional mathematical expectations.

296



References

1. Shiryaev, A.N. (1998). Osnovy stokhasticheskoi finansovoi matematiki. T.2:
Teoriya. Fazis: Moscow. (In Russian)

2. Boyle, P.P. [et. al.] (1998). Financial Economics with Applications to Investments,
Insurance and Pensions. The Actuarial Foundation: Schaumburg/Illinois.

3. Zuev, N.M., Lappo, P.M. (2024). O postroyenii portfelya investitsiy
minimiziruyushchego srednekvadraticheskoye otkloneniye ot funktsii vyplat.
XIV Bel. Mat. Konf.. P. 136–137. (In Russian)

297



Index

Abdusalomov, 73
Afanasiev, 9
Afanasyev, 13
Agabekova, 16
Alexeyeva, 20
Aliev, 24
Andreev, 28

Balametov, 31
Bazhanova, 38
Beliauskene, 43
Bendega, 16
Berikov, 47
Bokun, 52
Bout, 58
Burkatovskaya, 277
Bykau, 203

Chemykhin, 63
Chentsov, 69

Dyakonova, 263
Dzhalilov, 24, 73

Egorov, 78
Ermakov, 82

Filatova, 82
Filev, 281
Fontana, 24

Golyandina, 133, 214
Gusev, 9

Inyutin, 247
Isayeva, 31
Ivashko, 86

Jalilov, 90
Jiacheng, 95

Kharin A., 99, 210
Kharin Yu., 105, 115, 172, 272
Kharlamov, 119, 244, 281

Khartov, 123
Khil, 127
Khomidov, 129
Khromov, 133
Kimyaev, 247
Kolesnikov, 137
Kopats, 145
Korolenok, 285
Krasnoproshin, 150, 154
Kruglov, 158
Kudrov, 163
Kutnenko, 43, 47

Lappo, 222, 295
Latushkin, 172
Lobach S., 177
Lobach V., 177
Lotov, 180

Maltsew, 181
Malugin, 38, 58, 184
Matskevich, 150
Mazalov, 86
Mikulich, 191
Mukha, 194

Palukha, 198
Pardaev, 198
Parkhimenka, 203
Pastukhov, 207
Pleshakou, 210
Poteshkin, 214
Prokhorchik, 115

Rahel, 218
Romanchak, 222
Rusilko, 229

Safiullin, 225
Salnikov, 229
Samarin, 20
Savelov, 233
Selezneva, 237

298



Serov, 240
Shamardzina, 285
Shevtsova, 244
Shklyaev, 127
Sotov, 20
Spesivtsev A., 247
Spesivtsev V., 247
Starovoitov, 154

Terekhov, 257
Troush, 259
Tsybulka, 259

Ustinova, 43

Vatutin, 263
Voloshko, 115, 266, 272
Vorobejchikov, 277

Zasko, 244, 281
Zhalezka, 95, 285
Zherelo, 292
Zhuk, 191
Zuev, 295

299



 
 
 
 
 
 
 
 
 
 
 
 

Научное издание 
 

COMPUTER  DATA  ANALYSIS  AND  MODELING: 

STOCHASTICS  AND  DATA  SCIENCE 
 

Proceedings of the XIV International Conference 

Minsk, September 24–27, 2025 
 
 

КОМПЬЮТЕРНЫЙ  АНАЛИЗ  ДАННЫХ  И  МОДЕЛИРОВАНИЕ: 

СТОХАСТИКА  И  НАУКА  О  ДАННЫХ 
 

Материалы XIV Международной конференции 

Минск, 24–27 сентября 2025 г. 
 
 

На английском языке 
 
 

В авторской редакции 
 

Ответственный за выпуск В. А. Волошко 
 
 

Подписано в печать 03.09.2025. Формат 60×84/8. Бумага офсетная.  
Печать цифровая. Усл. печ. л. 34,87. Уч.-изд. л. 21,56. 

Тираж    экз. Заказ 
 

Белорусский государственный университет. 
Свидетельство о государственной регистрации издателя,  

изготовителя, распространителя печатных изданий № 1/270 от 03.04.2014. 
Пр. Независимости, 4, 220030, Минск. 

 
Отпечатано с оригинал-макета заказчика. 


